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cognition researchers.

Foundations of Geometric Cognition shows that basic geometric skills are deeply
hardwired in the visuospatial cognitive capacities of our brains, namely spatial
navigation and object recognition. These capacities, shared with nonhuman
animals and appearing in early stages of human ontogeny, cannot, however, fully
explain a uniquely human form of geometric cognition. In the book, Hohol
argues that Euclidean geometry would not be possible without the human
capacity to create and use abstract concepts, demonstrating how language and
diagrams provide cognitive scaffolding for abstract geometric thinking, within a
context of a Euclidean system of thought.

Taking an interdisciplinary approach and drawing on research from diverse
fields, including psychology, cognitive science, and mathematics, this book is a
must-read for cognitive psychologists and cognitive scientists of mathematics,
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PREFACE

The prominent philosopher, logician, and mathematician Bertrand Russell
confessed in his Autobiography that:

At the age of eleven, I began Euclid, with my brother as my tutor. This was
one of the great events of my life, as dazzling as first love. I had not
imagined that there was anything so delicious in the world. After I had
learned the fifth proposition, my brother told me that it was generally
considered difficult, but I had found no difficulty whatever. This was the
first time it had dawned upon me that I might have some intelligence.
(Russell, 2009, p. 25)

I do not know of many people (in fact, not even one) who could honestly say
something like Russell about their first encounter with geometry. Learning
geometry from Euclid’s original masterpiece, Elements, is not that common, either,
even at the higher stages of one’s formal education. We also do not encounter
Euclid’s famous fifth postulate, the one that so fascinated the 11-year-old Russell,
unless we delve deeper into mathematics. Yet, each of us has encountered Euclidean
plane geometry, enriched with some historically more recent inventions, such as a
Cartesian coordinate system, at the very earliest stages of our schooling.

Besides arithmetic, most of the contemporary students and laymen alike perceive
Euclidean geometry as the prototypical subject of mathematical education.
Learning the principles of geometry, in a similar manner to numerical knowledge,
plays a pivotal role in the acquisition of mathematical competencies that are useful
in everyday life. Euclidean geometry is also extremely significant from the
perspective of the history of mathematics. Hellenistic mathematics, including
number theory, emerged from the use of geometric concepts and methods. Delving
deeper still, the axiomatic-deductive approach to geometry developed by Greeks
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and depicted in Euclid’s masterpiece established a rigorous pattern of the
philosophical discourse, or the rational thinking in general, for many centuries.
Moreover, many prominent scientists admit that geometric imagination plays a
great role in their mathematical thinking. Sir Roger Penrose (2004, 2018), for
instance, used to say that he like considering problems geometrically. The same is
true of Richard Feynman, as neatly described in his biography by Gleick (2011):

In high school he had not solved Euclidean geometry problems by tracking
proofs through a logical sequence, step by step. He had manipulated the
diagrams in his mind: he anchored some points and let others float,
imagined some lines as stift rods and others as stretchable bands, and let the
shapes slide until he could see what the result must be. These mental
constructs flowed more freely than any real apparatus could. Now, having
assimilated a corpus of physical knowledge and mathematical technique,
Feynman worked the same way. The lines and vertices floating in the space
of his mind now stood for complex symbols and operators. They had a
recursive depth; he could focus on them and expand them into more
complex expressions, made up of more complex expressions still. He could
slide them and rearrange them, anchor fixed points and stretch the space in
which they were embedded. Some mental operations required shifts in the
frame of reference, reorientations in space and time. The perspective would
change from motionlessness to steady motion to acceleration. (p. 161)

These insights correspond with the frequently cited, and at the same time highly
controversial, observation of Henri Poincaré (1929) that mathematicians can be
divided into two camps: analysts and geometers, wherein it “does not prevent the
one sort from remaining analysts even when they work at geometry, while the
others are still geometers even when they occupy themselves with pure analysis” (p.
210; see Hadamard, 1945). All of this makes geometric thinking a fascinating topic.

Like any human intellectual enterprise, Euclidean geometry also emerges
from cognitive processes and the activity of our brains. Nevertheless, the
cognitive origins of geometry remained puzzling for a long time. A cognitive
revolution that occurred in the mid-1950s, together with the later development
of a new discipline called cognitive science, made this subject explorable in a
scientific way. Nevertheless, the foundations of geometric cognition remain
mostly unknown even today for the majority of mathematicians, historians of
science, educational researchers, philosophers, psychologists, and cognitive
scientists. Furthermore, even those of the latter who are interested in mathematical
cognition focus primarily on the cognitive processing of numbers and calculations.
This is manifested in the fact that the problem of geometry is essentially absent
in most of the fundamental monographs in the field of mathematical cognition.
We can observe a similar pattern in the cases of scientific conferences and
journals. In contrast to the processing of numbers, there is no cyclical conference
or peer-reviewed journal specializing in geometric cognition.



Preface xi

Although I have decided to limit my investigation in this book to Euclidean
geometry, developed in ancient Greece but still taught to some degree to children
today, starting in primary school, identifying crucial properties of geometric
cognition remains a difficult task.! Despite the fact that children and the majority
of educated adults are unfamiliar with proving theorems in an axiomatic-
deductive fashion, leaving this method of reasoning aside entirely would make
my investigation grossly incomplete. The proof is “a hard core” of Euclid’s
contribution to the whole of mathematics. According to this fact, I try to explain
not only where elementary manifestations of geometric cognition, such as
sensitivity to angle, length (distance), and sense (left-right direction) come from,
but also how the processing of abstract geometric concepts works and how
Euclidean proofs that provide general results in a necessary way are cognitively
possible at all. My proposal for sketching the account of the cognitive foundations
of Euclidean geometry involves the following desiderata:?

(D1) The account should recognize whether the cognitive capacities that
are necessary to engage with Euclidean geometry are “hardwired,” or
whether they are rather constructed through individual learning.

(D2) The account should describe how these capacities are combined
during ontogeny into a system of abstract geometric concepts.

(D3) The account should elucidate how the mind/brain of the human
being (especially if it is constrained by the body and environment) is able
to process abstract concepts at all.

(D4) The account should elucidate the geometric proof characterized by
epistemic virtues: compelling power (or necessity) and generality of
providing results.

Let me briefly explain how I intend to explore the above desiderata in the following
chapters. In Chapter 1, I investigate different perspectives on geometric thinking,
involving the history of mathematics, philosophy, early experimental psychology,
education research, and, finally, interdisciplinary cognitive science, which will be
further explored in subsequent chapters. This review chapter, which is the most
extensive, will familiarize the reader with the crucial notions of Euclidean
geometry and existing approaches to mathematical cognition, as well as the
research problems that are particularly associated with the desiderata (D1-D4).

In Chapter 2, I attempt to identify the “hardwired” foundations of geometric
cognition, namely those occurring in human beings at an early developmental
stage and shared with nonhuman animals. Adopting Tinbergen’s strategy of
explanatory questions I show that the sensitivity to elementary Euclidean
properties is not a uniquely culture-dependent human skill that emerges when
learning geometry in school. This sensitivity is observed in the context of the
recognition of shapes and spatial navigation in many animal species and human
infants in many cultures. Therefore, I defend a version of the “hardwiredness” of
elementary geometric cognition (D1), elaborating upon this notion by grounding
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it in the findings of various branches of cognitive science and related fields as
cognitive and developmental psychology, neuroscience, evolutionary biology,
ethology, comparative cognition, and behavioral robotics. Bearing in mind that
only humans have developed, and are capable of assimilating, full-blooded
Euclidean geometry, in this chapter I also investigate the limits of hardwired
geometry and how children go beyond them. Thereby, I show that the process
of the acquisition of the abstract conceptual structures of geometry is first
mediated at the preschool level by enculturation with spatial language and map-
like scale models (D2).

It is a truism to say that the concepts of Euclidean geometry are abstract in
nature (D3). On the other hand, there is much evidence to show that the body
and physical surroundings constrain the thinking of human beings. Therefore, in
Chapter 3, I investigate how the processing of abstract concepts, something
which seems to require us to reach beyond our proximal experience, is at all
cognitively possible. T start by discussing the classic view of computational
cognitive science on conceptual processing and show that it faced severe
challenges (e.g., the symbol grounding problem) that stimulated cognitive science
to shift the research paradigm. In this context I describe the emergence of
embodied cognitive science while simultaneously claiming that in its strong
version, where it assumes that the sensorimotor system of the brain both serves as
the conceptual vehicle and determines the conceptual content, it is ill suited for
the elucidation of geometric abstracts. I defend the claim that (D3) can be fulfilled
by adopting the moderate version of embodiment, one that makes room for the
shaping of the content of abstract concepts by internalizing natural language.
Following Lev Vygotsky and contemporary theorists of the moderate version of
embodied cognitive science, I show that, by virtue of its social nature and
computational properties, human language serves as scaffolding for further
learning. In other words, it is a cognitive artifact that makes establishing and
using abstract concepts cognitively possible.

The above-summarized chapter does not directly answer the question of the
origin of “the power of proof,” or the epistemic virtues of Euclidean geometry.
Therefore, in Chapter 4, I seek a cognitive base for the compelling power (or
necessity) of Euclidean reasonings and the generality of provided results (D4). To
this end I shift the perspective of my investigation from experimentally oriented
cognitive science to the cognitive history of geometry as developed by Reviel
Netz. I make use of the notion of the cognitive artifact introduced in Chapter 3
and trace the role of two intertwined inventions of the ancient Greeks, namely
lettered diagrams and well-regulated professional language, which helped to
build a cognitive niche within which the necessity and generality of geometric
proofs became possible. In this context, I hypothesize that the professional
language of geometry—one that is mutually interconnected with diagrams
through letters associated with geometric points—is characterized by the
computational properties enhancing the hardwired cognitive capacities of the
human being to a greater extent than ordinary or everyday language. At the end
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of the book, I list the limits of my investigation and outline the perspectives for
further research on geometric cognition.

Notes

1. Cognitive scientists sometimes do not perceive geometry as a phenomenon to be
explained, or explanandum, but they use geometric or topological structures for
modelling cognitive processes and representations. Geometry is used to explain
mental phenomena, or plays a role in the explanans, for example, in Girdenfors’
(2004, 2014) theory of conceptual spaces.

2. Note that the following list is a modified version of one introduced previously in our
article (Hohol & Mitkowski, 2019). The current proposal is undoubtedly not final,
and does not pretend to be complete. Assuredly, the desiderata for the study of
geometric cognition will change during the evolution of the cognitive science of
mathematics and related fields.
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1

GEOMETRIC THINKING, THE
PARADISE OF ABSTRACTION

1.1 Introduction and synopsis of the chapter

The purpose of this chapter is to provide an overview of different perspectives on
geometric thinking. My ambition is not only to tell the story (actually very incomplete)
of the various faces of geometric thinking, including perspectives of the history of
mathematics, philosophy, early experimental psychology, education studies, and
finally interdisciplinary cognitive science, but also to establish “a searching space,”
which allows us to identify some crucial aspects of geometric cognition on the
basis of the achievements of different (but related) perspectives. My further goal is
also to familiarize us with terms that we will meet in the next chapters.

The chapter proceeds as follows. First (Section 1.2), I will introduce the roots of
geometry, showing that Euclid’s Elements is founded on the efforts of generations of
mathematicians who brought geometry to the paradise of abstraction. Subsequently,
in Section 1.3, I will show that the geometric intuition is a locus classicus of European
philosophy stretching from Plato to Helmholtz. The considerations of the latter—
Helmholtz—were scientifically inspired while still philosophical in nature. In
Section 1.4, I will tackle the first full-blooded experimentally oriented account of
the development of geometric cognition, as elaborated by Piaget and Inhelder.
Following this, I will still focus on developmental issues, but now perceived from
the educational perspective. Thus, in Section 1.5, I will introduce and discuss the
classic model of the emergence of geometric skills introduced by van Hiele and van
Hiele-Geldof. In Section 1.6, I will present the cognitive revolution that allowed
for the development of a broader research perspective on geometric cognition, one
that will serve as our companion throughout the remainder of the book. Discussing
cognitive science studies on mathematics, I will show that during its own evolution,
this field shifted toward numerical cognition and left Euclidean geometry by the
wayside. Section 1.7 is a summary.
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1.2 The geometric roots of mathematical thinking

Euclid’s splendid masterpiece, the Elements, unquestionably set the agenda of the
subsequent development of European mathematics and established the pattern of
mathematical rigor for many centuries to come. Euclid’s system did not, however,
emerge from a vacuum, but summarized, or rather developed further, the
achievements of his predecessors. Thus, prior to discussing it, we should introduce
the distant, pre-Euclidean origins of geometry.! At the very beginning, however,
we have to stipulate that if we accept the broadest possible, and at the same time
very intuitive, definition of geometry, which states that it is the science of space, the
times to which we withdraw did not contain anything akin to institutional
science. Instead, the comprehension of space was a very practical enterprise; that
is, it was connected with architecture and land measurement. In this sense, one
can say that the history of geometry begins before geometry.

The oldest material premises for the use of geometric regularities by man date
back to the earliest megalithic cultures (Dzbynski, 2014). The ancient Egyptian
constructions that are partially preserved to this day, such as the temple of Abu
Simbel or the pyramids, as well as Babylonian ziggurats, reveal a sophisticated
sensitivity to geometric form and allow us to suppose that their constructors
were familiar with at least some rudimentary geometric knowledge (O’Leary,
2010). There are also historical premises that Egyptians were highly proficient in
techniques for land measurement involving knowledge about geometric
relationships. One of the earliest mentions concerns the determination of the
amount of land tax in relation to the annual flooding of the Nile. Herodotus
(2009), the fifth-century BC Greek historian, described the following story of
nineteenth-century BC pharaoh Sesostris, also written as Senusret III, who
reigned in Egypt during the Middle Kingdom period:

This king distributed the land to all the Egyptians, giving an equal square
portion to each man, and from this he made his revenue, having appointed
them to pay a certain rent every year: and if the river should take away
anything from any man’s portion, he would come to the king and declare
that which had happened, and the king used to send men to examine and
to find out by measurement how much less the piece of land had become,
in order that for the future the man might pay less, in proportion to the
rent appointed: and I think that thus the art of geometry was found out and
afterwards came into Hellas also. (Book II, p. 109)

Although it is far from clear whether the story is true—Herodotus stated that the
priests of Thebes had informed him that it was the case—the Egyptian origins of
geometry are also mentioned in other Greek historical sources. The story related
by Herodotus reveals the source of the Greek term yewpetpia, which literally
means the measurement of the Earth. Before we consider how geometry was
transmitted from Egypt to Greece, as the Greek historian suggests, it is worth
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emphasizing that Egyptian knowledge about figures or polyhedrons was strictly
technical and took the form of practical rules (Merzbach & Boyer, 2011).
Applying these rules to particular problems did not lead the Egyptians to invent
abstract mathematics with the necessary and general arguments characteristic of
Euclidean geometry. Instead, as Russo (2004) has summed up, Egyptian
achievements

can be called mathematical only in that their object is solving problems
that we would call arithmetical or geometric; they completely lack the
rational structure that we associate with mathematics today. They contain
recipes for solving problems—for example, calculating the volume of a
truncated pyramid or the area of a circle (the latter being, of course,
unintentionally approximate)—but there is no sign of anything like a
justification for the rules given. At that stage, then, fairly elaborate notions
beyond the integers had already been developed, including many plane and
solid figures, area, and volume; problem-solving methods were passed
down the generations; but the correctness of the solutions was based solely
on experience and tradition. This was very far from being a science in the
sense we have given the word. It was simply a part of that enormous store
of empirical knowledge that enabled the Egyptians to achieve their famous
technological feats; it was methodologically homogeneous with the rest of
such knowledge, and transmitted in the same way. (p. 32)

According to the traditional view, the art of geometry came to Greece together
with Thales of Miletus, called the first Greek philosopher, who lived at the turn
of the seventh and sixth century BC (see Aufrere & Marganne, 2019; O’Grady,
2002). Because his writings have not survived, this opinion is based on later
documents, such as a treatise by the fifth-century Neoplatonic philosopher
Proclus, who refers to the now-missing history of mathematics by Eudemus of
Rhodes (fl. ca. 320 BC). According to this tradition, Thales traveled to Egypt,
where he became familiar with a technique for determining the height of pyramids
on the basis of the measurement of their shadows. He also visited Babylon, where
he learned a proposition of elementary geometry which stated that when A, B,
and C are distinct points on a circle and the line AC is a diameter, then the angle
ABC is a right angle, something which is known today as Thales’ theorem (see
Figure 1.1). Proclus (1970) claims, however, that Thales also made original
contributions to geometry: “He made many discoveries himself and taught his
successors the principles for many other discoveries, treating some things in a
more universal way, others more in terms of perception” ([8.74], 65.7-11).

The discoveries mentioned by the Neoplatonic philosopher concern the

9 ¢

following geometric facts: “a circle is bisected by a diameter,” “the base angles of
an isosceles triangle are equal,” “the pairs of vertical angles formed by two
intersecting lines are equal,” and “if two triangles are such that two angles and a

side of one are equal, respectively, to two angles and a side of the other, then the
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FIGURE 1.1 Thales’ theorem. According to Thales’ theorem, if A, B, and C constitute
distinct points on a circle where the line AC is a diameter, then the angle ABC is a
right angle.

triangles are congruent.” The most impressive contribution to geometry that is
traditionally attributed to Thales seems to be, however, “treating some things in
a more universal way.” The point is that he allegedly not only knew the above
facts, but he was also supposed to demonstrate them deductively. Simultaneously,
Thales supposedly introduced a principle that similar figures, regardless of their
material substance, have the same geometric properties. Thus, Thales of Miletus
is sometimes designated not only as the first Greek philosopher but also the first
full-blooded geometer. One must be aware, however, that this claim is of a
semilegendary nature.

Although Thales is portrayed as the first geometer, the tradition says that
Pythagoras, the prophet, mystic, and philosopher of Samos (6th—5th century BC),
established the first Greek mathematical school (see Kahn, 2001). He presumably
trod the same well-worn road to Egypt and Babylon where, like Thales, he was
able to learn the art of geometry firsthand. Transferring these mathematical ideas
to Greece, he gave them an abstract and general form. One of the essential
achievements attributed to him is the discovery of the theorem, known today as
Pythagoras’ theorem, that the square built on the triangle’s side opposite to a
right angle is equal to the sum of two squares formed on the other two sides of
the triangle (see Figure 1.2). Even though the geometric relationship was
imported rather than discovered by Pythagoras, neither Egyptian or Babylonian
geometers were aware of its proof, while the philosopher of Samos was supposed
to be the first to demonstrate it. In a more general perspective, as Proclus (1970)
said, “Pythagoras transformed the philosophy of geometry into the form of a
liberal education, searching in an upward direction for its principles and
investigating its theorems immaterially and intellectually” ([8.74], 65.7—66.8). In
a manner akin to Thales, Pythagoras’ contribution to geometry also has
semilegendary character.

Contemporary historians agree that Pythagoras established a school or
something akin to a secret association in Croton around 530 BC, but its character
was initially religious. One of the central points of Pythagorean doctrine was
number mysticism, a connected conviction that numbers constitute “the elements
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FIGURE 1.2 Pythagoras’ theorem. According to Pythagoras’ theorem, the sum of the
areas of the two squares built on the legs a and b is the same as the area of the square
built on the triangle’s side ¢ opposite the right angle.

of all things” (Aristotle, 2009a, p. 986a). The discovery of incommensurability
undermined this conviction, triggering both a religious and mathematical crisis
(Knorr, 1974). It turned out that there are magnitudes, for example, lengths of a
diagonal of a square, characterized by irrational numbers. The crisis was
overcome by means of the deployment of geometric algebra, namely replacing
numbers and numerical operations with geometric figures such as line segments,
rectangles, and parallelepipeds. We will see more of the technical aspects in the
later part of this section, but for now let us emphasize the fact that, in resolving
the crisis of incommensurability, the Pythagoreans transformed geometry into a
fundamental branch of Greek mathematics.

The detachment of geometry from “concrete things” did not happen
overnight, but instead took the form of a continuous process. Furthermore,
instead of being the achievement of a single person, it should be assigned to the
disciples and followers of Pythagoras as well. Even though the scientific part of
the secret community that focused primarily on mathematics emerged relatively
late, the initial treatment of mathematics as a spiritual exercise and component of
worship could help encourage, or even drive, the abstract investigation of
mathematical relationships and, consequently, conducting demonstrations of
geometric theorems (A. Seidenberg, 1961). It is also possible that the use of
specific tools or artifacts played a crucial role in the emergence of abstraction and
deduction in Greek philosophy.

The contribution of the Pythagoreans comprises the introduction of two of
the tools used in Euclidean geometry to this day, namely elements of technical
language and aspecialkind of drawings. Regarding the former, the Pythagoreans
introduced a few well-known concepts for first time such as “straight line,”

s

“line segment,” “plane,” and ‘“angle.” It was also noteworthy that they
distinguished between various kinds of angles, for example, “inscribed angle”
and “central angle,” and defined mathematical terms. Regarding the latter
tool, drawings of geometric shapes, known to us today as diagrams, were

undoubtedly used earlier, and we can find them in various cultures throughout
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the ancient world (notably, the Greek term Sidypappa literally means “figure
marked out by lines” [cf. Netz, 1999b, p. 35]). However, Pythagoreans
presumably invented scale drawings and understood that increased or decreased
figures might be similar, holding the same geometric properties. Moreover, at
least according to tradition, Hippocrates of Chios, a fifth-century BC Greek
mathematician who belonged to the Pythagorean school before being expelled
for the terrible crime of teaching for money, was the first to use letters to mark
points on geometric diagrams (Merzbach & Boyer, 2011, p. 61). I will return to
technical language and lettered diagrams in Chapter 4, where I will try to
interpret them as cognitive artifacts, namely tools affecting, or even shaping,
geometric cognition.

As we have seen, Thales and Pythagoreans transformed the art of the
measurement of concrete objects and fields into the science on space, which uses
abstract concepts and demonstrates general theorems. As Merzbach and Boyer
(2011) say, “with them, mathematics was more closely related to a love of wisdom
than to the exigencies of practical life” (p. 45). Although the first deductive
reasoning is credited to Thales and Pythagoreans, they were certainly not
familiar with the axiomatic-deductive method, according to which theorems
should be derived from a set of well-defined axioms (or postulates) under the
rigor of necessity-preserving rules. The axiomatic-deductive method originated,
however, outside the science of space, having been initiated by Aristotle.

Aristotle was no mathematician, but his contribution to logic and scientific
methodology strongly influenced the development of geometry (see Heath,
1970). In his Posterior Analytics, Aristotle (2009b) stated that all reliable knowledge
consists of two kinds of true propositions (statements): self-evident ones, which
do not require further justification, and propositions demonstrated “by showing
that it is a logical consequence of propositions already known to be true”
(Murawski, 2010, p. 41). According to Aristotle, each theorem contains
components of several kinds: the definitions of the terms introduced in a theory;
the principles, assumed without a proof (some of them, called “the axioms,”
characterize the fundamental properties of magnitudes, and others, called
“postulates,” refer to the entities studied by the specific discipline); and, last but
not least, existential statements postulating the existence of objects specified by a
theorem. These components, as Aristotle claimed, should be wused in
demonstrations, namely chains of immediate inferences where propositions are
transformed without losing their truth value.

The axiomatic-deductive method that was modeled on the Aristotelian idea
was incorporated into geometry on the largest scale in the Greek world by Euclid
(Mueller, 1981; Murawski, 2010). The geometric reasonings enshrined in his
Elements were recognized as a model of intellectual rigor and a prototype of
scientific thinking for many centuries, mainly as a result of two epistemic virtues:
these reasonings are necessarily true and lead to universal results. We know,
however, very little about the life of the author of Elements. Frankly, we do not
even know when and where exactly he was born and died. Frequently it is
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assumed that he lived between 325 and 270 BC and studied at Plato’s Academy,
or at least under the supervision of one of Plato’s apprentices—according to
Proclus (1970), “Euclid belonged to the persuasion of Plato and was at home in
this philosophy; and this is why he thought the goal of the Elements as a whole to
be the construction of the so-called Platonic figures” (p. 68). The author of
Elements is called Euclid of Alexandria since he worked in this city under the
reign of Ptolemy I Soter. The tradition says that Ptolemy asked Euclid to indicate
a shorter way to understand geometry than through studying the whole of the
Elements. The geometer apparently answered, as Proclus (1970) reported, “there
was no royal road to geometry” (p. 68). Even though we do not have many
biographical details about Euclid, we have at our disposal more of his treatises
than of any other Greek mathematician (Merzbach & Boyer, 2011). In addition
to Elements, the following treatises by Euclid have survived to our times: Data
(the content is interpreted as supplementary material to a couple of first books of
Elements), On Division of Figures (as the title suggests, it concerns the division of
plane configurations into parts), Phenomena (on spherical astronomy), and Optics
(on the geometry of direct vision). Let us look at the structure of the content of
Euclid’s greatest work.

Elements consists of 13 books or—to say more modernly—chapters.? The first
six books introduce elementary plane geometry and geometric algebra. To briefly
illustrate how geometric algebra works, let us introduce Proposition 1 of Book 2,
which states that “if there are two straight-lines, and one of them is cut into any
number of pieces whatsoever, then the rectangle contained by the two straight-
lines is equal to the (sum of the) rectangles contained by the uncut (straight-line),
and every one of the pieces (of the cut straight-line)” (I use the translation of
Euclid’s Elements by Fitzpatrick, 2008). This assertion is a geometric equivalent of
the distributive law, which is today expressed in the following form:

alb+c+d)=ab+ac+ad

Let us introduce further books. The next three concern the geometric theory
of numbers, according to which each natural number is conceptualized by a line
segment and multiplication is represented in terms of measuring. The 10th book
covers the problem of incommensurables, and the final three books deal with the
geometry of Platonic solids.

Book 1 opens with a list of 23 definitions (further definitions are introduced
in the following books). The first three define “a point,” “a line,” and “the
extremities of a line”: “1. A point is that of which there is no part,” “2. And a line
is a length without breadth,” and “3. And the extremities of a line are points.”?
Immediately after definitions, Euclid lists principles that involve two sets: five
postulates and five common notions.* After them, the author presents geometric
theorems as so-called “propositions.” They involve constructions that allow the
reader to understand geometric relationships or—according to the other
interpretation—bring these relationships into being. I will return to this issue in
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the next section. For now, let us list “a methodological skeleton” of Book 1 of
Elements, namely all of the postulates and common notions.

Postulates:

Let it have been postulated to draw a straight-line from any point to any point.
And to produce a finite straight-line continuously in a straight-line.

And to draw a circle with any center and radius.

And that all right angles are equal to one another.

v LN

And that if a straight-line falling across two (other) straight-lines makes
internal angles on the same side (of itself whose sum is) less than two right-
angles, then the two (other) straight-lines, being produced to infinity, meet
on that side (of the original straight-line) that the (sum of the internal angles)
is less than two right-angles (and do not meet on the other side).

Common notions:

Things equal to the same thing are also equal to one another.

And if equal things are added to equal things then the wholes are equal.
And if equal things are subtracted from equal things then the remainders are equal.
And things coinciding with one another are equal to one another.

v e

And the whole [is] greater than the part.

We do not have room for a detailed analysis of the content, origins, and
importance of all of Euclid’s initial statements. It suffices to note that the vast
majority of postulates and common notions are well grounded in tradition,
transparent or even self-evident, and easy to grasp—one can “see” them quickly—
and thus they did not raise reservations either in ancient Greece or in later times.
The situation is dramatically different in the case of the famous fifth postulate,
also known as the parallel postulate. Since the postulate seemed not to be self-
evident and instead rather complicated, Proclus (1970), who did not deny its truth,
claimed that “this ought even to be struck out of the Postulates altogether” (p.
150). For two millennia, successive generations of mathematicians made attempts
to prove the fifth postulate using the remaining four ones; however, these efforts
turned out to be unsuccessful. In 1868, Italian mathematician Eugenio Beltrami
finally demonstrated the independence of the postulate from the others listed in
Elements (see Bardi, 2008 for an accessible introduction). Furthermore, in the first
half of the nineteenth century, Janos Bolyai, Nikolai Ivanovich Lobachevsky, and
Carl Friedrich Gauss independently discovered the possibility of construction of
logically consistent geometric systems by replacing the parallel postulate with
other ones. This discovery paved the way for the development of so-called non-
Euclidean geometries, that is, hyperbolic and elliptic geometry.®

Let us return to Ancient Greece and try to determine the scientific status of
Euclid’s Elements. On the one hand, it is called a mathematical treatise, which,
thanks to the author’s original discoveries, established or founded full-blooded
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geometry. On the other hand, we know well that Elements served as a mathematical
textbook already during the author’s lifetime and for about two millennia
afterward. There is virtually no contradiction in perceiving Euclid’s work both
as a treatise and a textbook (note that the distinction between these writing
forms is new); however, according to George Sarton, we should avoid two
extreme interpretations. The first interpretation, according to Sarton (1959),
speaks about Euclid as the originator or founding father of geometry:

If we take Egyptian and Babylonian efforts into account, as we should,
Euclid’s Elements is the climax of more than a thousand years. One might
object that Euclid deserves to be called the father of geometry for another
reason. Granted that many discoveries were made before him, he was the
first to build a synthesis of all the knowledge obtained by others and himself
and to put all the known propositions in a strong logical order. That
statement is not absolutely true. Propositions had been proved before
Euclid and chains of propositions established (...). In short, whether you
consider particular theorems or methods or the arrangement of the
Elements, Euclid was seldom a complete innovator; he did much better and
on a larger scale what other geometers had done before him. (pp. 23—24)

The second interpretation depicts Euclid only as “a textbook maker who invented
nothing and simply put together in better order the discoveries of other people”
(p. 24). In Sarton’s opinion, both interpretations—Euclid as an originator of
geometry and Euclid as a textbook writer—are mistaken, since, as he continues:

A good many propositions in the Elements can be ascribed to earlier
geometers, but we may assume that those which cannot be ascribed to
others were discovered by Euclid himself; and their number is considerable.
As to the arrangement, it is safe to assume that it is to a large extent Euclid’s
own. He created a monument which is as marvelous in its symmetry, inner
beauty and clearness as the Parthenon, but incomparably more complex

and more durable. (ibid, p. 24)

According to Sarton (ibid., pp. 24-36), Euclid’s original discoveries enshrined in
Elements involve, at least, formulating the famous fifth postulate, which—as we
have already seen—stimulated mathematical investigations for two millennia;
introducing several theorems of number theory, such as the existence of infinitude
of primes; and formulating the fundamental laws of geometric optics, to list only
the law of reflection.

The uniqueness of Euclid’s genius lies also, or perhaps primarily, in the fact
that he was capable of constructing both a versatile and a homogeneous “logical
space.” It is versatile, since it not only covers elementary plane geometry and
solid geometry, but also such mathematical fields as algebra and theory of
numbers. It is simultaneously homogeneous since all of these fields are
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comprehended in geometric terms. Thanks to the versatility and homogeneity of
Euclid’s masterpiece, as the Dutch mathematician Hans Freudenthal (1971) said,
“for a long time mathematics has been synonymous with geometry” (p. 417).
Elements has undoubtedly affected the mathematical thinking of successive
generations, and its impact extends beyond mathematics—the discussion on the
sources of Euclidean geometry is a classical theme in European philosophy. This
debate has worn various masks from the ontological to the epistemological. In
the next section, we will consider the recurring theme of these discussions,
namely intuition as a source of geometric knowledge.

1.3 Geometric intuition as a philosophical locus classicus

“Let no one ignorant of geometry enter herein” (Ayewpétpntog undeig eioitw).
According to tradition, this motto was engraved at the entrance to Plato’s
Academy, and it expresses the notion that mathematics alone delivers a necessary
prerequisite of philosophy: training in abstract thinking. This common
interpretation goes hand in hand with the traditional account that Plato was a
highly demanding master who required from his philosophical apprentices the
study of geometry for at least 10 years, while the course of philosophy lasted only
5. Although he lived before Euclid, already in Plato’s lifetime (approximately
427-347 BC), geometry was a sophisticated matter, and adepts had to put in a lot
of effort to achieve mastery.

Plato did not, however, claim that recognizing all geometric truths is solely
the merit of extensive training. On the contrary, he believed that man is capable
of intuitively and effortlessly grasping rudimentary knowledge on geometric
points, line segments, angles, and relationships between figures. Plato (2009a)
illustrates it in one of the Socratic dialogues entitled Meno, where the uneducated
slave boy conducts deductive reasoning that leads to the necessary conclusion
that a square built on the diagonal of a given square is double. The demonstration
takes into account that the bigger square is formed of four triangles, wherein each
of triangles is equal to half of the given square (Figure 1.3).

FIGURE 1.3 The geometric proof by Plato’s slave boy. The figure is patterned after
Russo (2004, p. 37) and visualizes how the geometrically naive slave boy described
by Plato in Meno proved that the square built on the diagonal of a given square is
double. His informal reasoning refers to the fact that the bigger square is formed of
four triangles, wherein each of triangles is equal to half of the given square.
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Although Plato was fully aware that achieving mathematical mastery requires
long-term training, he believed that the human being is equipped with an
“insight,” or “intuition,”—an innate, or hardwired, sense of mathematical ideas
that constitute a foundation of further practice and it is not an outcome of “habit,
practice or convention” (see Parsons, 1980, p. 146). Thanks to the intuition, each
adept of geometry (such as the slave boy) is capable not only of conducting simple
deductive reasoning but also of perceiving the self-evident truthfulness of
mathematical axioms (postulates and common notions). Such a view is
complemented by Plato with a claim expressed in The Republic (Plato, 2009b)
that “the knowledge at which geometry aims is knowledge of the eternal, and
not of aught perishing and transient” (527b). The knowledge, accessible through
Platonic intuition, is persistent, unchanging, and necessary, and therefore it is
discovered, rather than being invented or arbitrarily created by man (see
Wedberg, 1955, pp. 63—82). According to Plato, the geometric objects constructed
by mathematicians by means of diagrams and linguistic expressions are not
appropriate objects of geometric knowledge. As Detlefsen (2005) has summed up
the discussion, “they could at best serve as representations of real objects and
provide some sort of practical guide to their knowledge” (p. 243).

Although Euclid was educated in the Academy, or at least had contact with
Platonism, in his Elements, as well as other treatises, he avoided direct philosophical
declarations, and thus we do not know much about his views on the prerequisites
of geometry and the meaning of geometric constructions. We do know, however,
that these issues were extensively discussed by Greek philosophers, such as
Proclus, who was influenced both by Plato and Euclid. This fifth-century BC
Neoplatonist called the Successor was one of the last heads of Academy (see
D’Hoine & Martijn, 2017 for an overview) and the author of A Commentary on
the First Book of Euclid’s Elements (1970)—a treatise to which we have referred
many times and will do so further—which refined, or developed further, the
Platonic philosophy of mathematics (O’Meara, 2017).

Referring to other Platonists, namely Speusippus and Amphinomus, Proclus
stated that the construction of geometric objects is not in the making of them,
but rather understanding them, that is, “taking eternal things as if they were in
the process of coming to be” (1970, p. 78; see Bowen, 1983). In other words,
constructions allow man to grasp what has always existed. Proclus believed that
perfect geometric objects and their relationships cannot be derived or abstracted
by man from their imperfect and deficient material shadows. Consequently, he
said that Euclidean constructions are possible thanks to the contemplation of
intelligible geometric principles that are innate, albeit initially hidden, in the
soul. As O’Meara (2017) notes:

Mathematics starts from this innate knowledge, developing it on the level
of articulated logical reasoning (discursive thought) in the form of concepts
which are defined and propositions (axioms) which are stated. These first
articulations of innate knowledge are then combined so as to deduce their
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consequences, 1.e., the conclusions that can be derived from them.
Mathematics is thus a “projection” in discursive thought of the innate
knowledge of soul. Mathematical objects both constitute soul, as intelligible
principles, and are constituted by soul, as the concepts, propositions, and
arguments which soul elaborates (or “unrolls,” a favourite image) by
rational methods from these principles. (p. 172)

This does not mean, however, that all Hellenistic philosophers agreed with the
Platonic claim that the foundations of geometric knowledge are innate. Aristotle,
for example, stated that mathematical entities are intellectually abstracted from
physical objects, and thus geometric knowledge has an empirical character
(Heath, 1970). The same is true regarding the status of geometric constructions:
not everyone agreed that geometric constructions are representations, or
reflections, of eternal geometric objects. The fourth-century BC mathematician
Menaechmus, a personal friend of Plato and an associate of the Academy,
interpreted geometric constructions entirely literally, namely as “a process by
which objects were produced or generated” (Detlefsen, 2005, p. 244).
Simultaneously, Menaechmus rejected the view that the matter of mathematics
is the contemplation of eternal forms (see Bowen, 1983).

As we have seen, the philosophical debate about the status of Euclidean
geometry was already raised in Ancient Greece and later continued in subsequent
epochs. Although we are unable to examine this in detail, a few of its modern
episodes may be illustrative at this point. René Descartes was both the founder
of modern philosophy and a creative mathematician. As a mathematician,
Descartes (1637/2012) launched a new field: an algebraic geometry, which
applied established seventeenth-century algebra to the treatment of geometric
problems (see Lenoir, 1979). As an influential philosopher, he further grounded
geometry as the standard for all rational discourse, claiming that geometric
theorems reveal prototypical “eternal truths” (Descartes, 1976). Intuition, also
called “natural light,” was the cornerstone that allowed our mind’s eye to perceive
the “clearness and distinctness” of mathematical theorems (Morris, 1973).
According to Descartes (1684/1998), intuition is not “the fluctuating testimony
of the senses” nor “the deceptive judgment of an imagination which composes
things badly” (p. 79). Instead, intuition is

the conceptual act of the pure and attentive mind, a conceptual act so easy
and so distinct that no doubt whatsoever can remain about what we are
understanding. Alternatively, it amounts to the same thing to say that by
“intuition” I understand the indubitable conceptual act of the pure and
attentive mind, which conceptual act springs from the light of reason
alone. Because this act is simpler, it is more certain, than deduction, which,
however, as we have noted above, a human being also cannot perform
wrongly. Thus everyone can mentally intuit that he exists, that he is
thinking, that a triangle is bounded by only three lines, that a sphere is
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bounded by a single surface, and similar things, which are much more
numerous than most might realize, since they disdain to turn their minds
to such easy matters. (ibid., pp. 79-80)

Finally, it should be emphasized that although Descartes understood intuition as
a purely intellectual capacity, or something belonging to the sphere of thinking,
he conceptualized intuition according to a traditional metaphor, stating that
“thinking is seeing.”

The issues of mathematical intuition and sources of geometric knowledge
were especially crucial for Immanuel Kant. We should recall his views briefly
here since they enjoyed a wide impact on interpreting Euclidean geometry, as a
“privileged” (in relation to others) mathematical system. The Konigsberg
philosopher claimed that all mathematical theorems, including the first principles,
have the status of so-called synthetic a priori propositions. ““Synthetic,” according to
Kant, means that a proposition’s predicate concept is not contained in its subject
concept, and therefore a proposition expands our knowledge; “a priori” means
that the truth of a proposition is independent of empirical justification and may
be recognized intuitively.® In the Prolegomena to Any Future Metaphysics, Kant
(1783/2004) noted that mathematical reasoning:

carries with it thoroughly apodictic certainty (i.e., absolute necessity),
hence rests on no grounds of experience, and so is a pure product of reason,
but beyond this is thoroughly synthetic ... All mathematical cognition has
this distinguishing feature, that it must present its concept beforehand in
intuition and indeed a priori, consequently in an intuition that is not empirical
but pure, without which means it cannot take a single step; therefore its
judgments are always intuitive. (p. 32)

In other words, mathematical propositions, such as “all rectangles have four sides
as well as four right angles,” appear to be justified purely intuitively, but they are
not tautological since they deliver information beyond that encoded in a subject
concept.

Kant claimed that mathematical propositions are simultaneously synthetic and
a priori, since they are associated with transcendental structures organizing
cognition, namely representations of space and time (Brozek & Olszewski, 2011;
Parsons, 1980). Notably, he understood space and time not as independent
substances (things), or something external to the human being, but instead as
internal components of the mind (or the transcendental ego, in Kantian terms):
the forms that filter our sensual impressions. The internal representation of space
allows us to construct geometry, while the representation of time underlies the
construction of arithmetic. As Kant (1783/2004) said:

Now space and time are the intuitions upon which pure mathematics bases
all its cognitions and judgments, which come forward as at once apodictic
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and necessary; for mathematics must first exhibit all of its concepts in
intuition—and pure mathematics in pure intuition—that is, it must first
construct them ... Geometry bases itself on the pure intuition of space.
Even arithmetic forms its concepts of numbers through successive addition
of units in time, but above all pure mechanics can form its concepts of
motion only by means of the representation of time. (p. 35)

From its ancient beginnings, geometry was a science about space that we now
call Euclidean. As mentioned in the previous section, this state only changed
in the first half of the nineteenth century, when coherent geometric systems
with the negation of the parallel postulate were developed. Kant perceived
Euclidean geometry not only as a privileged field of mathematics but also stated
that the space understood as the inner component of the human mind (resp.
transcendental ego) is a starting point for the construction of geometry, which
is necessarily Euclidean. In other words, he believed that the intuition leads us
directly to Euclidean structures. Geometry does not come, however, from the
passive contemplation of space. Kant emphasized the active role of the human
mind in the construction of geometric entities. Brozek and Olszewski (2011)
nicely summarized this aspect of Kant’s doctrine: “mathematical knowledge
cannot be gained by recourse to concepts. The analysis of pure concepts cannot
lead us to the establishment of any mathematical theorem—in order to prove
anything, we need to construct our concepts, and for the construction we need
intuition” (p. 89).

Let us try to evaluate Kant’s contribution to the philosophy of geometry. On
the one hand, historians of mathematics often stress that Kant’s unquestionable
authority inhibited the reception of non-Euclidean geometries for decades and
contributed to the absolutization of the Euclidean system, namely perceiving it
as the matter of truth. On the other hand, Kant’s concept of the link between
geometric intuition and the internal representation of space has inspired
generations of researchers who, nevertheless, mostly disagreed with his claim
that intuition can only lead to geometric constructions constrained by the set of
Euclidean postulates. In the final paragraphs of this section I will take a look at
two prominent figures—Henri Poincaré and Hermann von Helmholtz—who
were strongly influenced by Kant but rejected his claim that Euclid’s postulates
are indisputable.

Henri Poincaré, the French scientist of the turn of the nineteenth and
twentieth centuries, is known for his tremendous impact on numerous disciplines,
such as pure mathematics (e.g., he was one of the cofounders of topology and the
author of the conformal disk, which is a model of hyperbolic geometry),
mathematical physics (almost simultaneously to Einstein, he developed the
mathematical foundations of special relativity theory), and philosophy,
particularly the general methodology of science, as well as the philosophy of
mathematics (see J. Gray, 2012). Mathematical intuition was one of his main
interests (Murawski, 2004). Inspired by Kant, Poincaré (1905) perceived it as the
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innate creative power of the human mind. This capacity fosters the construction
of mathematical concepts and makes that mathematical theorems are perceived
as clear and distinct. Furthermore, Poincaré considered generalization by
induction, which allows the formulation of synthetic mathematical propositions—
namely those that expand our knowledge—a manifestation of aprioristic
intuition. He also considered the relationship between conscious and unconscious
levels of mathematical processing. According to Poincaré, a large number of
mathematical theorems originate at the unconscious level, but must be completed
by consciously controlled reasoning.

Although Poincaré referred explicitly to Kant, he developed an original
position in the field of the philosophy of geometry. In contrast to Kant, Poincaré
stated that postulates and common notions (or axioms, in modern terms),
which serve as the starting point of geometric proofs, are not synthetic a priori
judgments. This does not mean that Poincaré returned to the traditional claim
that geometry describes spaces that extend outside and are independent of the
human mind. Instead, he stated that although empirical facts can affect the
choice of geometric axioms, ultimately they are accepted by virtue of the
convention or methodological decision (such a view is called conventionalism).
According to this line, we cannot say that Euclidean geometry, indeed any
geometric system, is true. The criteria for choosing a given set of axioms are—
in addition to avoiding inconsistency—convenience, fruitfulness, and
simplicity. We can describe the same physical phenomena by using different
geometric systems. According to Poincaré (1905), there are, however, some
reasons according to which, “Euclidean geometry is, and will remain, the most
convenient” (p. 50):

1st, because it is the simplest, and it is not so only because of our mental
habits or because of the kind of direct intuition that we have of Euclidean
space; it is the simplest in itself, just as a polynomial of the first degree is
simpler than a polynomial of the second degree; 2nd, because it sufficiently
agrees with the properties of natural solids, those bodies which we can
compare and measure by means of our senses. (ibid.)

To sum up, although mathematical intuition understood in Kantian terms played
an essential role in Poincaré’s philosophy of mathematics, the French scientist
claimed that the construction of Euclidean geometry, or at least its starting point,
does not emerge from the structure of the transcendental ego, but is instead a
matter of convention driven by simplicity and physical facts. Poincaré’s views on
the foundations of geometry were no exception. Hermann von Helmholtz was
another researcher who was strongly influenced by the Konigsberg philosopher,
but he eventually followed his own path.

Hermann von Helmholtz, who is considered one of the founding fathers of
experimental psychology, was undoubtedly one of the most versatile scientists of
the nineteenth century. He was a physician, physiologist, and mathematical
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physicist, but his scientific approach was intertwined with his philosophical
interests. His contribution to the understanding of the human mind and nervous
system includes, among other things, studies on the perception of space, colors
and sounds, the measurement of the speed of nerve impulses, pioneering ideas
about unconscious processing, and a critique of nativism. Helmholtz was engaged
in mathematical practice, and his interests focused on non-Euclidean geometry
(Helmholtz, 1868/1977a). All those multifaceted interests affected his
philosophical views on the foundations of geometry (see Biagioli, 2016; Hatfield,
1990; Hyder, 2009).

Helmholtz claimed that Euclidean geometry is not a privileged geometric
system. He believed that non-Euclidean geometries are not just “mathematical
toys” or useless products of human imagination, but they may be adapted to
describe physical reality. According to him, the traditional view that the
geometry characterized by Euclid’s axioms describes the space that surrounds us
isnotanirrefutable fact, butrather a question that requires empirical investigation.’
He also questioned the view—one held even by Poincaré—that Euclidean
geometry comes to our minds in a privileged, due to its simplicity, way. In the
paper entitled On the Origin and Significance of the Axioms of Geometry, Helmholtz
(1870/1977b) pointed out that a non-Euclidean world could be imagined as
effortlessly as a Euclidean one. By referring to an interpretation of Bolyai-
Lobachevsky geometry on a pseudospherical surface—proposed by Eugenio
Beltrami—Helmholtz introduced a thought experiment with an imaginary
world behind a convex mirror. Biagioli (2016) summarizes Helmholtz’s argument
as follows:

for every measurement in our world, there would be a corresponding
measurement in the mirror. The hypothetical inhabitant of such a world
may not be aware of the contractions of the distances she measures, because
these would appear to be contracted only when compared with the results
of the corresponding measurements outside the mirror. Therefore, she may
adopt Euclidean geometry. At the same time, the geometry of her world
would appear to us to be non-Euclidean. (p. 59)

Finally, let us consider Helmholtz’s views on the crucial subject of this section,
namely geometric intuition. Although he agreed with Kant that sensual
impressions are filtered—or transformed—by the perceiver, he rejected the
Kantian transcendental standpoint. According to Helmholtz (1870/1977b), “it is
no transcendental form of intuition given before all experience” (p. 26). The
same applies, according to him, to the ordinary representation of space: it is not
permanently fixed—or encoded—in the structure of transcendental ego or any
other hardwired factor, but it is formulated through experience, which involves
vision and the sense of touch.® Therefore, Helmholtz was an empiricist who
claimed that the mental capacity traditionally called geometric intuition, “(...) is
an empirical acquaintance, obtained by the accumulation and reinforcement in
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our memory of impressions which recur in the same manner” (ibid., pp. 25-26).°
Geometric intuition, as well as the internal representation of space, can be
analyzed in simpler mental components acquired during individual development.
Such an empirical view favored the experimental approach to the development
of geometric capacities.

As we have already suggested, Helmholtz’s views on the foundations of
geometry were influenced by his broader scientific interests. Although we can
consider his ideas a prefiguration of the experimental research on the acquisition
of geometric competences, we should bear in mind that Helmholtz undertook
the problem of the foundations of geometry mainly from the position of a
philosopher—thus I have introduced his standpoint in the current section. Before
we turn to describing the pioneering psychological research on the development
of geometric cognition, let us note that even though the transcendental account
of intuition (to a large extent thanks to Helmholtz) found its ultimate place in the
history of ideas, Kant’s approach has been revived both in philosophical and
psychological theories emphasizing innate, or hardwired, components of the
human mathematical knowledge.

1.4 The development of geometric skills as a
psychological problem

Experimental psychology emerged from, or rather began to emancipate itself
from, philosophy in the mid-nineteenth century. Hermann von Helmholtz, who
interestingly did not describe himself as a psychologist, contributed to the
independence of the discipline. The perception of spatial forms, at least in terms
of geometric-optical illusions, has been studied since the dawn of experimental
psychology (Oppel, 1855; Wundt, 1898). Then, in the first half of the twentieth
century, the various flourishing schools of psychology, which were gaining their
own methodological maturity at that time, explored geometry-related
phenomena. Gestaltists, for instance, aimed to discover the innate principles of
perception, thanks to which man is able to perceive spatial patterns and forms as
integrated wholes or gestalts (Koffka, 1936), while behaviorists studied how
animals learn to navigate in spatial layouts characterized by geometric properties
(Tolman, 1932). None of these schools, however, aimed to develop the theory of
geometric cognition. The problem was undertaken by Jean Piaget, a Swiss
researcher with broad interests, whose innovative experimental methods and
pioneering theories on cognitive development extended the scope of child
psychology, which had previously focused mainly on sensorimotor development
(Piaget, 1926).

In the most general terms, Piaget claimed that to fully attain the cognitive
skills observed in adults, the child must pass through several developmental
stages, during which subsequent structures of knowledge are constructed—
starting in infancy—one after another, and in a fixed order (Flavell, 1963).
Although Piaget focused on numerous aspects of cognitive development, from
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the shaping of naive physics to social beliefs, his research on the acquisition of
knowledge about space was “fairly central to his general theory of intelligence,”
and thus—as Ninio (1979) continues—it was “developed in great detail” (p.
126). The results of this research were enshrined in two of Piaget’s books,
namely The Child’s Conception of Space, coauthored with Birbel Inhelder
(1948/1967), and The Child’s Conception of Geometry, written together with the
latter and Alina Szeminska (1948/1960). The former work, which is of a more
introductory nature, focuses mainly on the developmental shifts leading the
child to the construction of the concept of Euclidean space, while the later
book describes the emergence of specific geometric capacities, such as
measuring. In this section, I will introduce and evaluate the content of Piaget
and Inhelder’s work.

Piaget and Inhelder (1967) claim that the child’s mental representation of
Euclidean space is not innate (or hardwired), nor is it formed instantly in a mature
form. Instead, it emerges, similarly to other cognitive achievements, through the
construction process that takes place in a fixed order and overlaps with the
general stages of cognitive development, starting in the early period.!® The
construction process is driven not by the passive observation of surroundings but
instead by motoric actions, namely exploration of environment and manipulation
of objects. These actions play crucial roles, providing the child with opportunities
to establish geometric concepts. Such concepts are, however, not abstracted from
perceived physical objects, but emerge as the outcome of an internalization of
actions. The child—as Piaget and Inhelder (1967) claim—*“can only ‘abstract’ the
idea of such a relation as equality on the basis of an action of equalization, the
idea of a straight line from the action of following by hand or eye without
changing direction, and the idea of an angle from two intersecting movements”
(p- 43). Thus, the authors explicitly state that geometric cognition originates in
“experimentation,” wherein

the experiments the child performs in modifying objects by his actions are
not purely and simply physical experiment dealing exclusively with the
intrinsic properties of objects as such (...). The first experiments which
give rise to the idea of space are in fact experiments on the subject’s own
actions, and they consist of finding out how these actions acceded one
another. For example, after placing B between A and C, the child discovers
that he is bound to encounter it once more between C and A. Having
passed the end of a string through a loop, preparatory to making a knot, the
child discovers that by pulling it further he does not change the essential
character of the knot, and so on. (p. 453)

Let us introduce the order in which, according to Piaget and Inhelder (1967),
children develop their geometric skills. Prior to establishing the fact that
objects—characterized by the permanence of shape and size—“populate”
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Euclidean space, the child constructs so-called fopological space. According to
Piaget and Inhelder, it is characterized by the following topological properties:

3

e Proximity (namely, the

perceptual field”; ibid., p. 6);

“nearbyness’ of elements belonging to the same

*  Separation (i.e., two elements are separated when they have no points in
common; p. 462);

*  Order or spatial succession (namely, perceiving that “two neighboring though
separate elements are ranged one before another”; ibid., p. 7);

*  Enclosure or surrounding (in two-dimensional space, it refers to the situation
when “one element may be perceived as surrounded by others,” while in a
three-dimensional layout, it “takes the form of the relation of ‘insaneness,” as
in the case of an object in a closed box”; ibid., p. 8);

*  Continuity (the property that characterizes lines and surfaces; it develops as
“the synthesis of” properties listed above; ibid., p. 144).1

Although children can discriminate between open and closed visual forms at
the earliest developmental stage, they do not have Euclidean concepts—such as
angle and length—yet. Thus, according to Piaget and Inhelder, for the child, the
earliest form of space is perceptual rather than conceptual. The crucial point is
that the topological properties listed above are grasped by children first since they
are abstracted from developmentally earliest actions, such as “the dissociated
elements of primitive motor rhythms in scribbling” (Clements & Battista, 1992,
p. 423).

Piaget and Inhelder’s (1967) view that sensitivity to the topological properties
listed above precedes the development of the mental representation of Euclidean
space is called the topological primacy thesis. The authors grounded their thesis
in the results of two kinds of behavioral experiments: haptic and drawing studies
(see Ninio, 1979). In the former, the children’s task was to explore hidden objects
tactilely and match them with replicas. According to Clements and Battista’s
(1992) summary, “preschool children were reported initially to discriminate
objects on the basis of topological features, such as being closed or otherwise
topologically equivalent. Only later could they discriminate rectilinear from
curvilinear forms and, finally, among rectilinear closed shapes, such as squares
and diamonds” (p. 422; see Figure 1.4).

Regarding the latter type of studies, Piaget and Inhelder assumed that since the
child’s capacity for drawing a copy of a given figure reaches beyond perceptual
and motoric capabilities, requiring representational skills, failed, or inexact, copies
reflect a deficiency in terms of her mental representation of space. For the first few
years of life, the child scrawls but, when she reaches the age of 3, her drawings
begin to reflect the topological properties of target objects. The child is, however,
unable to understand the difference between curved and straight-sided shapes.
For instance, when copying a circle, a drawn line is closed but geometrically
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FIGURE 1.4 Piagetian distinction on Euclidean and topological figures. The figure is
patterned after Clemens and Battista (1992, p. 424) and represents stimuli used in
behavioral studies by Piaget and Inhelder (1967). According to their topological
primacy thesis, children show sensitivity for the figures presented in the right column
earlier (in terms of developmental stages). The child begins to understand the figures
presented in the left column only in further developmental stages when she becomes

sensitive to Euclidean properties. Figures in the left column are called by Piaget and
Inhelder “Euclidean,” while figures in the right are termed “topological.”

irregular. Thus, a circle is indistinguishable for a 3-year-old child from a triangle
or rectangle. Approximately at the age of 4, the child distinguishes Euclidean
forms substantially better, becoming able to copy the square and rectangle
successfully; however, sensitivity for angular properties only refines in the next
few years. At the age of 67, children reach the sensitivity of all the Euclidean
properties, as manifested by the fact that they can replicate the rhombus.
Achieving sensitivity for Euclidean forms and their properties does not mean,
however, that children are already equipped with the concept of Euclidean space.
Before such a representation becomes fully developed, the child constructs
so-called projective space. According to Piaget and Inhelder’s (1967) terminology,
topological properties differ from projective ones in the fact that the former
concern a particular object, while the latter concern the object and their relative
position to the observer (note that “absolute” distance is not a projective property).
As Clements and Battista (1992) note, “projective relations begin psychologically,
at the point when the figure is no longer viewed in isolation but begins to be
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considered in relation to a point of view. For example, the concept of the straight
line results from the child’s act of taking aim, or sighting. Children perceive a
straight line since the earliest years, of course, but they cannot place objects along
a straight path not parallel to the edges of a table. Instead, they tend to follow the
edges of the table or curve the line toward such a path” (p. 423). This limitation
is overcome not earlier than at the age of 7. To sum up, projective space involving
the topological one is enriched with a viewpoint. The construction of projective
space takes place through linking—or coordinating—possible viewpoints with
the planes where the objects are placed.

When the mental construction of projective space is done, children increase
their experience of relationships between figures and objects themselves, and
begin to grasp the notion that these relationships are organized within a broader
frame of reference. Over the following few years, they construct geometric
concepts such as a straight line, parallels, and angles and acquire an understanding
of metric properties (distance), as well as increasingly recognize the similarity
between figures, something that goes hand in hand with increasing
transformational abilities. This process leads them, approximately at the age of
12, to developing the concept of Euclidean space. Such a concept, in its final form,
is highly abstract, because it refers not only to the concrete frame of reference
composed of elements occupying currently perceived positions, but rather to the
organization of space itself as an invisible “scene” for objects. As Piaget and

Inhelder (1967) said:

It applies equally to positions within the network as to objects occupying
any of these positions and enables the relations between them to be
maintained invariant, independent of potential displacement of the
objects. Thus the frame of reference constitutes a Euclidean space after the
fashion of a container, relatively independent of the mobile objects contained
within it, just as projective co-ordination of the totality of potential
viewpoints includes each viewpoint actually envisaged (p. 376).

To sum up, Piagetian theory states that the abstract idea of space “populated” by
objects and characterized by Euclidean properties is not innate, but is rather a
result—or a culminating point—of a long-term developmental process. The
process is driven by the progressive coordination of actions taken by the child,
and its outcomes do not operate on the principle of all or nothing. Prior to
establishing Euclidean space, the child constructs more primitive spaces, namely
the perceptual—which is characterized in topological terms—and the projective,
which is enriched with possible points of view. During individual development,
a new, increasingly sophisticated network of spatial concepts is constructed.
These concepts are understood by Piaget and Inhelder (1967) as ““(...) internalized
actions and not merely mental images of external things or events—or even
images of the results of actions” (p. 454). Before we turn to a critical discussion
of Piagetian theory, let us consider what geometric intuition—a traditional
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theme of philosophical investigations—looks like from this perspective. In the
general conclusions of The Child’s Conception of Space, Piaget and Inhelder (1967)
refer to this capacity explicitly:

The “intuition” of space is not a “reading” or apprehension of the properties
of objects, but from the very beginning, an action performed on them. It
is precisely because it enriches and develops physical reality instead of
merely extracting from it a set of ready-made structures, that action is
eventually able to transcend physical limitations and create operational
schemata which can be formalized and made to function in a purely
abstract, deductive fashion. From the rudimentary sensorimotor activity
right up to abstract operations, the development of geometrical intuition is
that of an activity, in the fullest sense ... . (p. 449)

Although the Piagetian theory of spatial development enjoys a certain degree of
popularity and remains influential in some academic circles, it has been criticized
in various aspects. Most of the doubts raised concern the topological primacy
thesis (Darke, 1982), but Piaget and Inhelder’s views on the development of
projective space (Newcombe, 1989) as well as Euclidean space (Liben, 1978) have
also been the subject of criticism (a review of “classic” studies can be found in
Clements & Battista, 1992). The simplest objection that comes to mind is the
inadequate methodology of drawing studies: the fact that the child cannot draw
a copy of a figure correctly does not necessarily mean that she lacks the relevant
Euclidean concepts, but may be explained by motor difficulties (Clements &
Battista, 1992, p. 423; see also Sinclair, Moss, Hawes, & Stephenson, 2018).
Piaget was aware of this objection; therefore, he did not use drawing studies as
the only measurement of spatial development (Martin, 1976b). Other objections
concern the mathematical adequacy of terms employed by Piaget and Inhelder
(1967) and are related to the division of figures into “topological” and “Euclidean”
(Clements and Battista, 1992, p. 424fF). Given that experimental design—as well
as each observation—is theory-laden, such objections permit us to doubt the
reliability of the Piagetian assertion that Euclidean properties develop from
topological ones.

Let us start with clarifying what the topology is. In the simplest terms, it is a
branch of mathematics (precisely, geometry) that investigates the properties of
space conserved under the class of continuous deformations. This class includes
operations such as stretching, twisting, crushing, and bending, but excludes
gluing and tearing. Proximity is the first of the relationships described by Piaget
and Inhelder (1967) as topological. Recall that the authors define it as “‘nearbyness’
of elements belonging to the same perceptual field” (p. 6). According to Kapadia
(1974), “this is certainly not a topological relationship. For it involves a vague
idea of distance, a concept foreign to general topology: there is no difference,
topologically, between a man wearing a pair of shoes and the same man who has
merely taken off his shoes” (p. 420). Also, enclosure cannot be perceived—even



Geometric thinking, the paradise of abstraction 23

though Piaget and Inhelder do this—as a topological property. At this point it
should also be noted that other notions used in The Child’s Conception of Space do
not correspond to standard mathematical usage (i.e., separation), or they are not
well defined (i.e., continuity) (Martin, 1976b).

These issues are related to the mutually exclusive division of figures into
“topological” and “Euclidean” employed by Piaget and Inhelder in their
experimental designs. As Martin pointed out, they, however, did not specify the
criterion of this division. Anyhow, as the author noted, such a classification
cannot be maintained since each figure has both topological and Euclidean
properties to the same degree: “for any one figure has as many topological
properties as any other figure, and the same is true for Euclidean properties”
(Martin, 1976b, p. 10). According to this interpretation, some figures used as
experimental stimuli were in fact topologically equivalent and thus Piaget and
Inhelder’s reasoning that child performance depends on topological properties is
unsound. After discussing some of the conceptual doubts and their impact on
experimental designs, let us look at the results of the direct replications of
Piagetian experiments and other findings that contribute to the evaluation of the
topological primacy thesis.

The attempt to directly replicate Piaget and Inhelder’s original findings turned
out to be a severe challenge due to the short, or even skimpy, descriptions of the
testing conditions and the suspicion that these conditions varied among all the
tested children (Page, 1959). However, this does not change the fact that replication
studies, whether they are of drawing or haptic experiments, were already carried
out a few years after the release of the first English-language version of The Child’s
Conception of Space (Lovell, 1959; Page, 1959; Peel, 1959). These studies generally
replicated the original findings, and simultaneously corroborated the topological
primacy thesis, while at the same time revealing some anomalies. On the one
hand, “the children between 2-5 and 4-0 years were nearly three times as
successful with the topological forms as with the simple geometrical shapes”
(Page, 1959, p. 119). On the other hand, Page’s (1959) study challenged Piaget and
Inhelder’s remarks on the poor distinguishing of curvilinear and rectilinear forms
by 4-year-old children: “the children tested in the present experiment had much
more competence in this matter than these remarks might lead one to expect”
(p- 117). Regardless of this, we can suppose that the results may be task dependent:
due to doubts about the theoretical basis of Piaget’s experimental designs, and
insufficient descriptions of the target experiments, the reliability of Page’s study
(as well as other direct replications of the original findings) is under question.

Subsequent research, reaching beyond direct replication, revealed further
effects incoherent with Piaget and Inhelder’s claims. For instance, Martin
(1976a) tested whether a child’s representation of space requires the preservation
of the topological properties of forms when those forms are transformed in
various ways. To this end, he used six target-shapes and their transformations of
three kinds. Transformed items of the first kind were topological counterparts
of the target, whereas transformed items of other types aimed at eliminating a
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specific topological relationship, namely connectedness (the second kind) or
closedness (the third kind), while simultaneously maintaining Euclidean
characteristics (namely, straightness, curvature, length of a line segment, or
angle) as much as possible.!? Martin tested 90 children, with 30 each from ages
4, 6, and 8. In each trial, the child was first confronted with the target-shape,
and then with three transformed items. Finally, the child was asked to indicate
two items: the one “most like” the target-shape, as well as the “worst”
modification. The study revealed that although children at the age of 4 tended
to indicate topologically equivalent transformations as “the worst” counterparts
of the target-shapes less frequently than 6- and 8-year-olds, “the worst” scores
turned out to be at or above chance. Furthermore, the youngest children selected
transformations that did not preserve topological properties as “most like” the
target-shape with similar frequency as older participants. The results, as
suggested by Martin (1976a), “do not support the theory that topological
concepts develop prior to Euclidean and projective concepts in the child’s
representational space” (p. 37).

Let us summarize the objections toward Piaget and Inhelder’s theory regarding
the development of spatial cognition and add some new elements. Both
methodological considerations and the results of experiments, for example, by
Martin (1976a), suggest that the theory fails in regards to the order of emerging
spatial concepts. Notably, the crucial claim, namely that grasping topological
properties precedes the acquisition of projective and Euclidean concepts, turns
out to be difficult to maintain. As I have mentioned earlier, Piaget and Inhelder’s
results seem to be task dependent, or as Clements and Battista (1992) noted, they
may be just artifacts emerging from selected visual stimuli and the children’s
sensitivity to them. Such a capacity, as these authors claim, may not be a matter
of grasping topological properties by the youngest children first, but rather a
derivative of familiarity with some figures or their perceptually salient properties.
As Clements and Battista (1992) continue, “It may be that children do not
construct first topological and later projective and Euclidean ideas. Rather, it
may be that ideas of all types develop over time, becoming increasingly integrated
and synthesized” (pp. 425—426).

Despite all of this, we should admit that Piaget and Inhelder’s studies on child
development of geometric concepts were precursory. Their value—as the first
genuinely experimental approach to the problem—is unquestionable. The
contribution of these researchers to understanding geometric cognition is also
pioneering in another manner. In a similar manner to Helmholtz, Piaget and
Inhelder rejected the innateness of geometric competences, but simultaneously
shifted the received view that Euclidean concepts emerge from the perception of
the surrounding world. Instead, they emphasized the role of the exploration of
the environment, the manipulation of objects, and the internalization of these
activities in the construction of geometric intuitions. As we will see in Chapter
2, the contemporary understanding of the cognitive foundations of geometry
dismisses the constructivism of Piaget and Inhelder, showing that some Euclidean
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concepts are “hardwired” in the child’s mind, while agreeing with the Swiss
researchers that reciprocal relationships between perceptual and motoric activity
and the internalization of one’s own actions are crucial for refining geometric
skills. Before we do this—and which will be preceded by looking at the
emergence of the cognitive science of mathematics—let us introduce an
educational perspective on the development of geometric skills.

1.5 Euclid in the classroom

One of the milestones of Piaget’s work was making cognitive development the
subject of experimental research. To a large extent, developmental psychology
reached beyond the simple description of changes in a child’s behavior over time
thanks to his contribution. The Piagetian approach went hand in hand with other
disciplines for which “development” is a crucial term. It inspired especially
educational studies, which have applied both constructivism and the idea of
developmental stages (Egan, 1983). The problem of learning mathematics is not
an exception: several approaches state that mathematical knowledge is acquired by
means of a construction process, characterized by distinct stages achieved by the
student in a fixed order (Kamii & Ewing, 1996; Lerman, 1989). Regarding the
field of geometry, a wife-and-husband duo of Dutch scholars, Dina van Hiele-
Geldof and Pierre van Hiele (1957/1984), elaborated in their doctoral dissertations
a prominent theoretical model (see also van Hiele, 1986), which influenced both
educational psychology research and mathematical curricula of several countries,
including the United States (see Battista, 2007; Clements & Battista, 1992; Usiskin,
1982; Wirszup, 1976). The model consists of three main component-parts: a
description of theoretical assumptions, levels of geometric thinking, and, finally,
phases of instruction. In the current section, I will first introduce the model, and
then discuss it in relation to the results of educational psychology studies.

The starting point of the van Hieles’ model is a set of theoretical assumptions
that naturally bring to mind Piaget’s ideas. But, as we will see later, thinking of
the van Hieles’ model as embedding geometric education in the received
framework would be wrong. First of all, van Hieles propose that learning
geometry is a sequential and hierarchical process (see Battista, 2007; Clements &
Battista, 1992; Hershkowitz, 2009; Roth, 2011). It is sequential since achieving
the mastery of academic geometry involves passing through the several levels,
each characterized by different modes of thinking. The process is also hierarchical
since mastering each of the higher levels requires proficiency at a lower one; in
other words, the student cannot skip a lower level and reach a higher one.
Another assumption made by van Hieles—linked, however, with the previous
one—is that the explicit understanding of geometric concepts at some level is
preceded by the implicit grasping of their content at the previous one. Finally,
the researchers assume that geometric concepts on each level are structured by
linguistic symbols that are unique at the appropriate level. According to these,
for instance, the correct understanding of the relationship between a square and
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a rectangle at some level may be incorrect at another one, which can be reflected
in communication problems between the teacher and the student. However, it is
not that the language merely reflects the development of geometric concepts.
Instead, as Clements and Battista (1992) note, “language structure is a critical
factor in the movement through the levels” (p. 427; see Chapter XIII of Dina van
Hiele-Geldof’s doctoral dissertation accessible in van Hiele & van Hiele-Geldof,
1984). Now let us introduce the levels of the development of geometric thinking.!

The first level is called the “visual.” At the beginning of education, the
student grasps geometric figures as gestalts relying only on the purely visual
aspects, and she does not consider their component parts, geometric properties,
or the fact that they belong to the more general geometric category. The
recognition of the figure has a holistic character and leads the student to create
her own mental image. At this level, the student learns to use verbal labels of
particular figures, wherein if she calls the observed figure a rectangle, she means
in fact, that the figure’s overall shape “fits” the shape called (by the instructor)
“rectangle.” The performance in tasks with distinguishing figures or recognizing
their congruency depends solely on holistic visual properties (“these figures
appear to be the same”) and does not involve the consideration of individual
properties (“these figures are the same because they have four angles”). At this
level, geometric forms are categorized only through their similarity with
familiar visual prototypes: for example, the student who is asked, “Why is this
a rectangle?” and answers something like, “Because it reminds me of a door,”
cannot justify her statement by referring to geometric relationships. Only after
the transition to the second level does the student begin to understand that
visual objects can be classified into more general categories and that these
objects may be characterized by specific properties.

At the second level—known as “descriptive” or “analytic”—the student is
able not only to identify figures by their overall visual shape, but also to
characterize figures due to the properties associated with them. At this level, the
student grasps that a rectangle is a parallelogram containing a right angle, and
therefore applies the verbal label “rectangle” to objects characterized by properties
that she has learned to specify as “rectangles.” Even though adepts of geometry
at the descriptive/analytic level still perceive figures holistically, now they are no
longer just visual gestalts, but bundles of relationships. These relationships are
grasped not only through passive observation but also by actions such as drawing
or measuring. As Clements and Battista (1992) note, at the second level “students
discover that some combinations of properties signal a class of figures and some
do not; thus, the seeds of geometric implication are planted” (p. 427).
Nevertheless, geometric thinking at this level is still limited, since the student
does not yet correctly understand how the properties of particular geometric
forms are related to each other. This limitation is overcome with the transition
to the following level.

The third level is called the “abstract” or “relational.” Once the student
reaches this level, she not only knows the properties of a given figure but also
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understands hierarchical relationships between geometric forms and their
properties. This capacity allows her to categorize figures and informally
substantiate these categorizations (a figure resembles another one; however, it is
not identical with it since it has some additional characteristics). Furthermore, at
this level, students reach beyond identifying figures based on visual shape and
some properties, becoming capable of understanding geometric concepts in
terms of necessary and sufficient conditions. This shift enables them to understand
and demonstrate logically sound geometric reasoning. Plato’s demonstration
introduced in Section 1.3 seems to be a good example of the reasoning accessible
on the third of the van Hieles’ levels. To demonstrate that a square built on the
diagonal of a given square is double, the student should be aware of some
geometric relationships, for instance, the fact that each square can be divided into
two triangles, wherein a diagonal of a square constitutes a hypotenuse (the side
opposite the right angle) of these triangles. Nota bene, as we remember, the
demonstration enshrined in the Meno is carried out by the geometrically naive
slave boy, which is—according to Plato—an argument in favor of the innateness
of geometric intuition. In contrast to the philosopher, the van Hieles’ model
states that the capacity to conduct informal reasonings appears at a relatively late
stage of geometric education. Despite the fact that students at the third level
understand that a definition is a tool of the logical organization of geometric
relationships (therefore this level is called “relational”), and geometric forms
about which they conduct informal reasonings are not just concrete visual forms
but bundles of unchanging properties (thus the level is also called “abstract”),
they still do not know that formal deduction serves as the tool for proving
geometric theorems.

At “the level of formal deduction,” which is the fourth according to the
numbering adopted here, “thinking is concerned with the meaning of
deduction, with the converse of a theorem, with axioms, with necessary and
sufficient conditions” (van Hiele & van Hiele-Geldof, 1984, p. 246). The
student is familiar with the axiomatic-deductive method and can use it in
practice to demonstrate some geometric truths via the construction of formal
proofs. Having achieved this level, she understands notions like “definition,”
“axiom,” “theory,” and “proof,” and efficiently distinguishes between defined
and undefined terms. The subject of reasoning carried out by students at the
fourth level involves the relations of the properties of categories of geometric
forms. Adepts of geometry also achieve mastery in understanding so-called
second-order relationships (namely involving relationships of relationships)
considered within a formal system. Although geometric knowledge at this
stage is already highly professionalized, there is still a final level that can be
achieved.

After the transition to the fifth level, called “meta-mathematical,” the
geometer’s (because at this level it would be strange to talk about a student, at least
in the ordinary sense) capacities reach beyond formal reasoning about geometric
relationships within the Euclidean system, and begin to concern multiple, that is,
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non-Euclidean, systems. Geometers, as Clements and Battista (1992) note, “can
study geometry in the absence of reference models, and they can reason by
formally manipulating geometric statements such as axioms, definitions, and
theorems. The objects of this reasoning are relationships between formal
constructs. The product of their reasoning is the establishment, elaboration, and
comparison of axiomatic systems of geometry” (p. 428). According to the van
Hieles’ model, the transition to the meta-mathematical level means achieving the
highest proficiency in geometric thinking by the adept.

Since we already know the characteristics of the levels, let us briefly introduce
phases of instruction that allow the student to become skilled at every level of
geometric thinking. First of all, the term “instruction” should be understood
literally, because passing through the levels listed above is not a matter of
chronological age. Instead, progress in geometric thinking, at least on the first
three levels, strictly depends on the learning process that is facilitated by the
teacher and the school curriculum. In the first, the so-called “information,”
phase, students become familiar with the scope of the field through discussions
with the teacher. “Guided orientation” is the second phase. At this stage, the
student is involved in the active exploration and manipulation of objects and the
teacher guides her to become implicitly familiar with selected geometric concepts
and methods. During the third, “explicitation,” phase, students begin to
understand geometric concepts explicitly, which manifests itself in their
appropriate linguistic descriptions of the topic. When students already practice
forming such reports in their own words, the teacher familiarizes them bit by bit
with relevant portions of professional geometric language. Thus, with the help
of instruction, students’ descriptions of geometric matter become less arbitrary.
The fourth phase is called “free orientation,” since the student can apply the
acquired conceptual knowledge and portions of professional terminology to
solve problems independently. The role of the teacher in this phase is primarily
correcting students’ mistakes and introducing alternative ways of solving the
problem. Finally, in the fifth phase (“integration”), the student integrates the
acquired knowledge and skills into a coherent framework, which may be
relatively easily reported in the professional language of geometry. The teacher
fills the gaps (if any) in her knowledge and indicates mutual relationships between
the elements of the subject matter. If this task is completed, the student is ready
to transition to the next level of geometric thinking.

As I have already mentioned, the van Hieles’ model has been widely recog-
nized by educators and has become the theoretical basis of curricula in many
countries. On the other hand, further studies raised doubts regarding the
adequacy of the initial assumptions, number of theoretical levels, and relation-
ship between geometric development and general cognitive development,
as well as the educational attainment of students in reference to levels (see
Roth, 2011). Before we present the controversies, let us note that the results of
numerous studies turned out to be, at least partially, consistent with the model,
and validated its potential usefulness in describing geometric development
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(see Clements & Battista, 1992 and Battista, 2007, p. 428). For instance, Burger
and Shaughnessy (1986) conducted a study with the participation of students
from the first grade up until college and asked them to perform tasks derived
from the characteristics of the van Hieles’ levels. The tasks mainly involved
drawing, identifying, and categorizing shapes, and informal as well as formal
problem-solving in the domain of geometry.

Burger and Shaughnessy (1986) found that the youngest participants revealed
a tendency to identify forms by means of their visual prototypes (“a rectangle
reminds me of a door”) and to characterize them in reference to geometrically
irrelevant properties. These students were included in Level 1 of geometric
thinking. In turn, more advanced participants who operated on shapes based on
their properties (“a rectangle has two sides equal and parallel to each other”)
were counted as attaining Level 2. Students who demonstrated the correct
understanding of relationships between different shapes (“both a rhombus and a
rectangle are parallelograms, just as a square”) were included in Level 3 of
geometric thinking. Finally, only one student who showed the capacity to
conduct formal proofs was regarded as reaching Level 4. The study does not
provide information about Level 5, which is not surprising since highly advanced
meta-mathematical considerations reach beyond school, or even college, material
and only seem to be available at the stage of doctoral studies in logic or
mathematics.

Burger and Shaughnessy also found that the participants assigned to
particular levels used specific linguistic expressions that substantiated one of
the crucial assumptions of the model. On the other hand, another critical one,
namely the discreteness of levels, previously found as accurate (see Wirszup,
1976), was not confirmed by the results. As Burger and Shaughnessy (1986)
note “the levels appear to be dynamic rather than static and of a more continuous
nature than their discrete descriptions would lead one to believe. Students may
move back and forth between levels quite a few times while they are in
transition from one level to the next” (p. 45). Perceiving the levels as dynamic
and continuous is supported by the finding that the student can be assigned
simultaneously to different levels depending on the task: she solves, for instance,
some problems in an abstract/relational way (Level 3), while others rather by
employing a less advanced descriptive/analytic mode of geometric thinking
(Level 2). Some other studies, for example, with the participation of
undergraduate teachers, supported this line (Mayberry, 1983). Furthermore,
Battista (2007) challenged the assumption that different kinds of reasoning
characterizing levels develop sequentially. According to him, it is possible that
“visual-holistic knowledge, descriptive verbal knowledge, and, to a lesser
extent initially, abstract symbolic knowledge grows simultaneously, as do
interconnections between levels” (p. 850). This, however, does not exclude the
fact, as Battista continues, that despite the simultaneous development, “one
level tends to become ascendant or privileged in a child’s orientation toward
geometric problems” (ibid.).
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Another challenge concerns the base level. As we already know, assigning the
student to a given level depends on fulfilling the level’s characteristics manifested
in her behavior. But what if she does not meet all of the indicators of the first level?
Fuys, Geddes, and Tischler (1988) suggested characterizing geometric thinking in
such cases as “the weak visual level.” Clements and Battista (1992) went a step
further, postulating “the existence of thinking more primitive than, and probably
prerequisite to, van Hiele’s Level 17 (p. 429). The zero level, called “pre-
recognition,” involves only processing a part of a shape’s attributes by the child (we
cannot talk about a student here, since the authors place this level at the earliest
Piagetian stage of spatial development). At the level of pre-recognition, the child
recognizes the difference between curvilinear (e.g., circle) and rectilinear forms
(rectangle); she is not, however, capable of discriminating forms belonging to the
same category.

At the end of this section, let us look at geometric education from a more
practical perspective, namely in terms of student achievements. The results of a
Programme for International Student Assessment (PISA) study by the
Organisation for Economic Co-operation and Development (see OECD, 2014)
revealed that students from several Western countries were less proficient in
geometry (to be clear, the relevant subscale is called Space and Shape) in
juxtaposition to other fields of mathematical education. The United States and
United Kingdom were the countries where the divergence was the largest.
According to Mammarella, Giofre, and Caviola (2017), a potential reason lies in
the fact that only 8%—15% of the content of mathematical textbooks used in
American primary schools—which reflects the scope of the curricula that they
are intended to deliver—concerns geometry.

Furthermore, given that progress in geometric thinking depends on the
instruction received, the authors see the second reason for students’ geometric
difficulties in the fact that teachers in the United Kingdom and United States
generally reach only the first and the second of the van Hieles’ levels (see Clements
& Sarama, 2011). Last, but not least, Mammarella and colleagues (referring to
their own research on the Italian population) suggest that if the assumption of the
van Hieles’ model regarding sequentiality of geometric development is correct,
one can suspect that difficulties at the earliest levels (visual and descriptive/
analytic) can meaningfully hinder progress in higher geometric thinking
(abstract/relational, formal deduction). Therefore, the authors emphasize the
need to facilitate the geometric thinking of both teachers and students through
already designed and future psycho-educational interventions (see Mammarella
et al., 2017, pp. 237-240). Taking into account the fact that curricula and
interventions should be evidence based (S. P. Miller & Hudson, 2007), and that
the “cognitive revolution,” which started in the mid-1950s, is by no means over
yet, mathematical educators should constantly follow the development of the
cognitive science of mathematics. In the following section, we will look at the
growth and development of this research field and discuss the place of geometric
cognition within it.
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1.6 How cognitive science discovered and forgot Euclid

Cognition, understood as an activity of the human mind that involves forming
internal representations including concepts, and processing them to guide
actions, has been studied experimentally at least since the time of Piaget. The
1920s—1950s works by the Swiss psychologist were not, however, widely known
in the United States,'* where behaviorism—intentionally avoiding speculations
on internal mental states—flourished as the dominant research perspective. The
situation in the United States changed in the mid-1950s, when the so-called
“cognitive revolution” began (see Bechtel, Abrahamsen, & G. Graham, 1998;
Gardner, 1985; G. A. Miller, 2003). Although the name was created and accepted
by the academic milieu a few years later, September 11, 1956, is assumed as the
symbolic date of birth of cognitive science. On that day, a famous symposium,
organized by the Special Interest Group in Information Theory, took place at the
Massachusetts Institute of Technology. Among others, Newell and Simon talked
about their computer program (programmed together with Shaw) that was
capable of solving mathematical problems, Chomsky introduced the influential
idea of transformational generative grammar, and G. A. Miller discussed the
results of his research on the limits of short-term memory.

After many years, the latter of these researchers, G. A. Miller (2003), noted:
“I left the symposium with a conviction, more intuitive than rational, that
experimental psychology, theoretical linguistics, and the computer simulation of
cognitive processes were all pieces from a larger whole and that the future would
see a progressive elaboration and coordination of their shared concerns” (p. 143).15
In addition to experimental psychology, linguistics and computer science,
neuroscience, philosophy, and also anthropology were constituents of cognitive
science from the very beginning; however, the position of the former trio was
perceived as central, while the latter were seen as more peripheral. This state
changed in the 1980s, with the search for the unity and integrity of this multibranch
discipline being done in earnest for the first time (Miltkowski, 2016; 2017; see
however, Nufez et al., 2019). Cognitive science is, however, still an open
enterprise that incorporates the results of related research fields if necessary.
Regarding the latter, and as we shall see in Chapter 2, the results of ethology,
comparative psychology, and evolutionary biology appear to be especially
informative. At this point we should, however, note that the early cognitive
science studies on mathematical thinking were “less interdisciplinary,” being
based mainly on the methods of computational modeling and experimental
psychology. Prior to the introduction of the first cognitive studies on geometry,
let us also add that early cognitive science conceptualized mental processing
mainly in terms of transformations of amodal and arbitrary symbols (Fodor, 1975;
Jackendoff, 2002), performed by brain structures distinct from these engaged in
sensorimotor processing (Bechtel et al., 1998).

Mathematics, especially mathematical logic, was an important research topic
for this budding discipline. Some of the “founding fathers” of cognitive science
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had directly recognized that the solving of logico-mathematical problems was
the prototypical matter of human thinking. For instance, Newell and Simon’s
(1956) aforementioned artificial intelligence program (nota bene, this term was also
coined in 1956), known as The Logic Theorist, attempted to prove some
theorems enshrined in Russell and Whitehead’s Principia Mathematica.
Interestingly, a proof of one of the theorems (i.e., 2.85) done by the computer
program was recognized as more elegant than the original. A few years later,
Newell, Shaw, and Simon (1959) finished their work on a new Al program called
General Problem Solver. Although the name is somewhat exaggerated, since the
class of potentially solved problems was limited solely to sufficiently formalized
ones, the General Problem Solver and similar programs performed well in various
kinds of mathematical problems. Euclidean proofs are not the exception here, yet
before introducing geometric theorem-proving programs it is worth casting an
eye over the basic designing principles of early Al programs.

General research methodology and conceptualization of cognition are more
important than technical details. First of all, Newell and Simon (1972; 1976), as
well as some of the other “founding fathers” of cognitive science, made efforts to
make the computational models psychologically reliable. To this end, they
implemented the results of psychological research into programs, mainly verbal
protocols, on problem-solving by flesh-and-blood human beings (Ericsson &
Simon, 1984). It should be emphasized that although these data served as
empirical support of the theoretical proposal embodied within the program, the
computer simulations delivered predictions that could be empirically tested in
further studies. Regarding the conceptualization of thinking (or cognition),
Newell and Simon’s (1976) studies were deeply embedded in the already well-
known idea that cognitive processing is based on manipulating amodal and
abstract symbols. In particular, these researchers proposed the so-called physical
symbol system hypothesis, which states that “a physical symbol system has the
necessary and sufficient means for general intelligent action” (p. 116). More
specifically, Newell and Simon understood thinking of each physical symbol
system, including both human and Al programs, as the heuristic search for a
solution to a problem carried out as rule-based and sequential (i.e., step by step)
symbol manipulations. Such an approach was also applied in early cognitive
studies on geometry.

The first—to the best of my knowledge—computer program devoted to
geometric theorem-proving was designed in the early 1960s by Gelernter (1963).
While the program did not implement results on human problem-solving
research, its abilities were nevertheless impressive for those times. The program,
for instance, was capable of finding proofs for propositions such as “a point on the
bisector of an angle is equidistant from the sides of the angle” and “in a
quadrilateral with one pair of opposite sides equal and parallel, the other pair of
sides are equal” (ibid., p. 143ff; see Figure 1.5).

Regarding the form of representation, Gelernter’s program operated by
transforming symbols according to syntactic rules, but also directly by processing
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FIGURE 1.5 Diagrams for the propositions proved by Gelernter’s program. The figure
is patterned after Gelernter (1963, pp. 147—148) and depicts diagrams for the two
propositions proven by his geometric theorem-proving program. The propositions
are the following: “a point on the bisector of an angle is equidistant from the sides of
the angle” (top) and “in a quadrilateral with one pair of opposite sides equal and
parallel, the other pair of sides are equal” (bottom).

diagrammatic representations of the relevant figures. Thus, an executive routine
of Gelernter’s program (called a heuristic computer) involved two main component
parts, namely, a syntax computer and a diagram computer (see Figure 1.6).
Gelernter supposed that such a computational organization reflects human
geometric practices. As Simon (1978) comments, “before the system attempted to
prove syntactically that corresponding angles, say, or corresponding sides of a pair
of triangles were equal, it first tested for approximate equality on the diagram.
The space of the diagram therefore served as a planning space that prescreened
proof attempts and saved effort in fruitless proof attempts” (p. 15). The path
delineated by Gelernter was followed successively by other researchers.

Nevins (1975) designed another theorem-proving artificial system that was
able to solve a wide class of plane geometric problems. Although the processing
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FIGURE 1.6 The structure of Gelernter’s program. The figure is based on Gelernter
(1963, p. 139) and shows the main component parts and the information flow of his
geometric theorem-proving program.
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of curve lines or the introduction of new points into diagrams was beyond its
powers, the author included the capacity to process several geometric predicates
into the program, such as straight line, parallel, right angle, equal segment, or
equal angle, which allowed it to operate in an abstract problem space in an
effective way. The Nevins program was an important step toward the powerful
automation of geometric reasoning, however its explanatory value was limited
since the operational rules were not based on human performance data. This
limitation was overcome by Greeno (1978), who used students’ verbal reports to
design a geometry theorem-proving program called Perdix. These reports
revealed, for example, that geometric reasoning is largely based on the processing
of diagrammatic information. Notably, in contrast to the models of Gelernter
and Nevins, Perdix’s purpose was not to solve geometric problems in the most
effective way, but rather by modeling the performance of students with moderate
expertise in geometry. A similar motivation guided the Geometry Tutor Expert
(GTE) by J. R. Anderson, Boyle, and Yost (1985). The GTE was designed to be
highly psychologically reliable. To this end, the authors implemented a number
of solutions adopted previously in a famous cognitive architecture called Adaptive
Control of Thought* (ACT*) by J. R. Anderson (1983). In particular, the
researchers incorporated ACT*’s heuristics of predicting inferences on the basis
of acquired contextual features involving both the diagram’s properties and
justified statements.

At the end of this brief review of classical Al geometric programs, let us
introduce Koedinger and J. R. Anderson (1990) Diagram Configuration (DC)
model. The model was well grounded in verbal protocols, and its purpose was to
capture the kind of geometric reasoning made by experts. The latter turned out
to solve geometric problems by sketching out possible solutions and planning the
tollowing inferences by taking into account information contained in the
diagram. This result is consistent with both previous computer simulations
(Greeno, 1978), as well as grounded in notable theoretical claims by Larkin and
Simon (1987). In the meaningfully entitled article, Why a Diagram Is (Sometimes)
Worth Ten Thousand Words, Larkin and Simon noticed that a diagram
predominantly represents related information in a more compact way than a set
of statements (where the information may be fragmented), and thus facilitates
the process of understanding. Furthermore, according to Larkin and Simon, a
diagram supports perceptual inferences that can be equally robust, but easier to
perform. In contrast to previous computer programs, which initially planned
successive inferences in a step-by-step way, but in line of verbal protocols
obtained from human experts, DC was capable of step-skipping and purposive
planning inferences through “parsing geometry problem diagrams into
perceptual chunks, called diagram configurations, which cue relevant
knowledge” (Koedinger & J. R. Anderson, 1990, p. 511).

As we have seen, geometry was the research topic of the “computational
branch” of cognitive science from the outset. Although research on geometric
theorem-proving computer programs was not completely isolated from the other
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empirical disciplines constituting cognitive science,'® we can venture to say that
in the first decades psychology, neuroscience, linguistics, and anthropology did
not contribute to exploring geometric cognition from their own perspective.
The situation was different if we consider the beginnings of psychological
research on numerical cognition. Already in the 1960s, Moyer and Landauer
(1967) published the results of a behavioral study which measured reaction time
(RT), and which strongly contributed to the further exploring of number
processing. They discovered the so-called numerical distance effect: when
participants are asked to select the numerically larger value of two presented
digits, RT increases when the numerical distance between them decreases.
Moyer and Landauer also observed the so-called numerical size effect: for the
same numerical distance, RT is shorter when participants compare small numbers
than larger. These effects have been intensively studied in further behavioral
experiments (see e.g., Dehaene, 1989; Tzelgov, Meyer, & Henik, 1992), and
then, when the neuroimaging techniques have been widely available, also in
neurocognitive ones (see e.g., Cohen-Kadosh, Lammertyn, & Izard, 2008;
G. Wood, Nuerk, & Willmes, 2006).

Although I have no intention to present the history of studies on numerical
cognition, I have introduced the example of Moyer and Landauer’s study since
it illustrates the quite different beginnings of the investigation of two domains
of mathematical thinking. In the case of numerical cognition, early efforts—
driven primarily by psychological methods—were “tuned” to discovering the
elementary numerical processing by each person familiar with numbers
(deciding which number is greater does not require specialist knowledge). On
the other hand, the earliest computational studies on geometric cognition
instantly aimed to understand the manifestations of higher geometric thinking,
such as proving theorems, that require extensive training, but “jumped over”
elementary geometric cognition. Research on the latter, as we will see in
Chapter 2, began only in the mid-1980s. Admittedly, numerous behavioral
studies using geometric stimuli had already been conducted in the 1970s. For
instance, Shepard and colleagues conducted a well-known study on mental
imagery and found that in a matching task requiring one to decide whether a
geometric object is the same but rotated or a mirror of a target, participants’
RTs increase with the angle of rotation (L. A. Cooper & Shepard, 1973;
Shepard & Metzler, 1971). Considering the contribution of the result for
understanding geometric cognition, we should, however, bear in mind that the
researchers were interested prima facie in the format of mental representations,
but not in angle processing in general. Let me put these issues temporarily aside
and consider how the development of cognitive science affected the studies on
mathematical thinking.

As we remember, cognitive science was dominated from the outset by the
triumvirate of computer science, psychology, and theoretical linguistics (in
practice, Chomsky’s generative theory did not influence early studies on
mathematical thinking), while neuroscience, anthropology, and philosophy
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played a peripheral role. During the 1980s, the situation began to change. As
Bechtel and colleagues (1998) nicely summarized the situation, cognitive science
“regained that breadth and more by expanding in two directions: vertically into
the brain and horizontally into the environment” (p. 81). At that time, extensive
research in all cognitive science branches was carried out, but embodied
cognition—a new grand perspective on the nature of cognitive processes—also
came to the fore.!” Although there are numerous ways of understanding what
“embodiment of the mind” really is, most researchers agree that it refers to claims
that cognitive processes are causally grounded in sensorimotor activity and that
the body shapes (constrains, enables, or even constitutes) the mental activity (see
e.g., Barsalou, 1999; Chemero, 2011; Clark, 1998; Davis & Markman, 2012;
Lakoft & Johnson, 1980; M. Wilson, 2002).

Besides the fact that embodied cognition has been widely applied in all branches
of cognitive science—starting from experimental psychology (Glenberg, 2010),
through linguistics (Lakoft, 1987), philosophy (Varela, Thompson, & Rosch,
1991), and anthropology (Csordas, 1990), and ending at computer science with its
new faces, such as behavioral robotics (M. L. Anderson, 2003)—this perspective
has strongly influenced studies in interdisciplinary research fields, such as social
mind (Broz'ek, 2013; Niedenthal, Winkielman, Mondillon, & Vermeulen, 2009),
aesthetics (Fingerhut & Prinz, 2018; Matyja, 2016), or psychopathology (Fuchs &
Schlimme, 2009). Mathematical thinking was not an exception there. Let us start
introducing the embodied mathematics by recalling that Lakoft and Johnson
(1980) proposed that the entire conceptual system emerges from sensorimotor
activity. Concrete concepts grow directly from perceptual and motor experiences,
accumulated as so-called image-schemas (see Johnson, 2012), while abstract ones
are produced by metaphorical mappings. According to these authors, a metaphor
is not just a linguistic expression, but rather “a cognitive tool,” reflected in
language use and built by two conceptual domains, namely “the target domain,
which is constituted by the immediate subject matter, and the source domain, in
which important metaphorical reasoning takes place and that provides the source
concepts used in that reasoning” (Lakoff & Johnson, 1980, p. 185). Furthermore,
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metaphorical expressions such as “I demolished his argument,” “you’re wasting
my time,” or “our love relationship is at a crossroads,” are meaningful for us since
the abstract concepts “argument,” “time,” or “love” preserve the inference
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structure of concrete concepts, respectively, “war,” “money,” and “journey,”
which directly arise from bodily experience.

A few years later, George Lakoff (1987, pp. 353-369), inspired by the
speculative ideas of the cofounder of mathematical category theory, Saunders
Mac Lane (1986), proposed that logical and mathematical concepts are also
deeply rooted in sensorimotor activity via metaphorical mappings. For instance,
Lakoft has noted that an idea of “class” (or “set”) arises from an ordinary concept
of “container,” and a “subclass” originates in bodily experience with part-whole.
A decade later, Lakoff approached mathematical cognition again in cooperation
with Rafael Nanez, proposing the metaphorical grounding of various concepts,
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from fields as numbers (e.g., Numbers Are Points on the Line), arithmetic
(e.g., Arithmetic Is Motion Along the Path), set theory (e.g., Sets Are Objects),
or functions (e.g., The Domain of the Function Is a Collection of Acceptable
Input Objects) (Lakoff & Nufez, 1997; Nunez & Lakoff, 1998). These works
were only a prelude for Lakoftand Nuaiiez’s (2000) book entitled Where Mathematics
Comes from: How the Embodied Mind Brings Mathematics into Being, which unified
the perspectives of cognitive psychology, linguistics, and philosophy of
mathematics to substantiate the claim that “the detailed nature of our bodies, our
brains, and our everyday functioning in the world structures human concepts
and human reason. This includes mathematical concepts and mathematical
reason” (p. 5). On the pages of this book, the authors developed and presented
their previous studies in more detail, but also enriched embodied mathematics
with new far-reaching hypotheses (e.g., regarding the bodily roots of both
potential and actual infinity) and case studies, e.g., the cognitive structure of
Euler’s famous identity:

" +1=0.

In the meantime, somewhere between Lakoff’s initial idea about the possibility
of applying the category of embodiment to studying mathematical cognition and
the publication of Where Mathematics Comes From, numerous experimental studies
on the cognitive processing of numbers by human (both adults and infants) and
nonhuman animals were conducted. Furthermore, the classic paradigms of
measuring various aspects of this processing, both in a purely behavioral and a
neuroscientific manner, were established (Berch, Geary, & Koepke, 2016;
Campbell, 2005; Cohen Kadosh & Dowker, 2015; Dehaene, 2011; Dehaene &
Brannon, 2011; Geary, Berch, & Koepke, 2015; given the sizeable nature of the
literature, I list only some of the “classic” handbooks and review collections
here). Some of them were used to test the assumptions of the embodiment of
mathematical cognition.

As we may recall, Lakoff and Nutnez proposed that one of the possible
conceptualizations of numbers refers to the idea of points arranged on a line
being grounded in bodily experience (Numbers Are Points on the Line). The
results of multiple studies pioneered by Dehaene, Bossini, and Giraux (1993)
supported this claim by revealing the behavioral tendency of the majority of
participants to organize numerical magnitudes spatially. By using the parity
judgment paradigm, where the participant is asked to decide whether the
presented digit is even or odd, Dehaene and colleagues found that responses of
left-to-right readers for small numbers are faster with their left hand, while
their RTs in relatively large number trials are shorter with the right hand.
This phenomenon is called “Spatial Numerical Association of Response
Codes” (SNARC) and has been illustrated on numerous occasions in various
study designs and groups of participants (see Cipora, Hohol, Nuerk, Willmes,
Brozek, Kucharzyk, & Necka, 2016; Cipora, Soltanlou, Reips, & Nuerk,
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2019; G. Wood, Willmes, & Nuerk, 2008). As Deahene (2011) summarized
this phenomenon in his widely read book entitled The Number Sense:

The finding of an automatic association between numbers and space leads
to a simple yet remarkably powerful metaphor for the mental representation
of numerical quantities: that of a number line. It is as if numbers were
mentally aligned on a segment, with each location corresponding to a
certain quantity. Close numbers are represented at adjoining locations. No
wonder, then, that we tend to confound them, as reflected by the numerical
distance effect. Furthermore, the line can be metaphorically thought of as
being oriented in space: Zero is at the extreme left, with larger numbers
extending toward the right. This is why the reflex encoding of Arabic
numerals as quantities is also accompanied by an automatic orientation of
numbers in space, small ones to the left and large ones to the right. (p. 70)

At this point it is worth saying that the title of the above-quoted work is far from
accidental. Although the term number sense was coined much earlier by Tobias
Dantzig (1954), the title of Dehaene’s book reflects the contemporary emphasis
on studying the hardwired cognitive capacities of elementary number processing,
both ontogenetically early and evolutionary ancient, that precede the learning
of school mathematics and which are shared by all people around the world
(Pica, Lemer, Izard, & Dehaene, 2004) and some nonhuman animals (Biro &
Matzusawa, 2001). These capacities are considered domain-specific, since they
are independent of general cognitive factors such as fluid intelligence, executive
functions, or linguistic skills, and involve subtilizing (i.e., ability to immediately
and effortlessly assess the number of small collections with a high degree of
precision) and the estimation and comparison of larger-magnitude sets of
elements (see Berch, 2005; Hohol, Cipora, Willmes, & Nuerk, 2017). Although
there is still some debate regarding this matter, Dehaene and many other
researchers believe that arithmetic and symbolic numerical systems, which are
unquestionably cultural inventions, are built up or scaffold themselves on the
number sense (Butterworth, 2005; Dehaene, 2001; Feigenson, Dehaene, &
Spelke, 2004; Piazza, Izard, Pinel, Le Bihan, & Dehaene, 2004). There is also a
suggestion that the number sense, or the hardwired foundations of mathematics
in general, may be interpreted as a renewed version of Kant’s views (Dehaene &
Brannon, 2010).

Let us return to the SNARC effect. Although Dehaene originally explained the
direction of the mental number line by the direction of reading,' Fischer (2008)
has proposed that spatial-numerical associations are shaped during individual
development prior to the acquisition of reading and that the direction of finger
counting affects these associations (see also Patro & Haman, 2012). The crucial
observation supporting this hypothesis is that participants who start counting with
their left hand manifest more robust and consistent spatial-numerical associations
than right-starters (see Cipora, Patro, & Nuerk, 2015; Fischer & Brugger, 2011;
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Hohol, Woloszyn, Nuerk, & Cipora, 2018 for the discussion of this claim). Since
the beginning of the twenty-first century, finger counting ceased to be perceived
merely as a transitory step, or immature computational strategy appearing in the
ontogeny of mathematical skills, and instead became the most extensively studied
manifestation of the embodiment of numerical cognition (see e.g., Fischer, 2012;
Jordan, Kaplan, Ramineni, & Locuniak, 2008; Noél, 2005; Penner-Wilger &
M. L. Anderson, 2013; Soylu, Lester, & Newman, 2018; Woloszyn & Hohol,
2017). Furthermore, the embodied perspective of numerical cognition, with finger
counting to the fore, has been considered with reference to anthropological data
(Overmann, 2014) and cultural differences (Lindemann, Alipour, & Fischer, 2011),
as well as situational influences and cognitive flexibility (Hohol et al., 2018; Wasner,
Moeller, Fischer, & Nuerk, 2014).

The set of evidence supporting the view that finger counting and number
processing are deeply connected includes not only the results of behavioral
experiments but also neuroimaging data. For instance, in a study with positron
emission tomography (PET), Zago and colleagues (2001) found that both
performing simple mental calculations and ordinary finger-related actions, such
as learning of movement patterns and manipulating objects, involve the
activations of the same brain structures, including the parieto-premotor circuit.
A subsequent functional magnetic resonance imaging (fMRI) study by
Tschentscher, Hauk, Fischer, and Pulvermiiller (2012) revealed that finger-
counting routines regarding the starting hand affect the pattern of motor cortex
activation. Finally, Andres, Seron, and Olivier (2007) proposed that the
relationship between finger counting and elementary numerical cognition has a
causal character since the numbers are cortically processed through the embodied
simulation of finger movements (we will discuss the notion of “simulation” and
other critical issues of embodied cognition in Chapter 3).

The purpose of the above elaboration was not to provide a sketch of the
landscape or to review the theoretical stances of the cognitive science of
mathematics (this term was popularized by Lakoft and Nuanez). This task would
be impossible here for practical reasons. My intention was rather to illustrate that
during the development of cognitive studies on mathematics, accompanied by
theoretical progress regarding the role of the body in the shaping of thinking,
“the center of mass” of research shifted toward the processing of numbers and
calculations. This observation can be further substantiated with the following
bibliographical and institutional facts.

If one picks up any mathematics-related cognitive science book monographs,
handbooks, or collection of articles, it is clear that they focus solely, or in the vast
majority, on number processing. In some cases, the content is fairly reflected by
the title, as in the above-cited work of Dehaene (2011), The Number Sense, and in
other literature positions (Butterworth, 1999; Cohen Kadosh & Dowker, 2015;
C. Everett, 2017; Geary et al., 2015; Henik, 2016). In other instances, the titles
suggest a broader range of topics because of the use of terms “mathematics” or
“mathematical cognition” (e.g., Adams, Barmby, & Mesoudi, 2017; Berch et al.,
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2016; Brozek & Hohol, 2017; Campbell, 2005; Gilmore, Gobel, & Inglis, 2018;
Lakoft & Nuifiez, 2000; Saxe, 2014). In practice, these volumes are primarily
focused on numbers, and geometry is a marginal topic.!” For instance, in Lakoff’s
and Nuaifiez’'s Where Mathematics Comes From, which aspires to be the most
comprehensive account, the discussion of geometry is restricted only to the
Cartesian plane and analytic geometry, and the cognitive foundations of
Euclidean approach are absent. Admittedly, there are few books where both
classic studies and theories of Euclidean thinking—with which we are already
familiar—and more recent ones—which we will discuss in the following
chapters—are reviewed (Dehaene & Brannon, 2011; Geary, Berch, Ochsendorf,
& Koepke, 2017; Giaquinto, 2007; Roth, 2011). This does not, however, change
the general observation that geometric cognition is in the minority.

An analysis of the institutional basis of the cognitive science of mathematics
also shows that numbers and calculations constitute a research topic that
overshadows geometry. On the one hand, studies on both numerical and
geometric cognition are welcome in almost all cognitive science (or their
constituent branches) journals and conference meetings. On the other hand, one
of the signs of research specialization is the creation of journals focused on
publishing original research, reviews, or theoretical contributions, on specific
topics. Indeed, in 1995, the specialist journal entitled Mathematical Cognition was
established, but only four years later it closed because of the insufficient number
of submissions. Perhaps symptomatic of this, none of the articles published in the
journal during its short existence concerned geometric cognition. The same is
true regarding the Journal of Numerical Cognition, because of its clearly defined
specialization, and which has been publishing since 2015. A similar sentiment
can be expressed about symposia and conferences: in contrast to the processing
of numbers, there is no cyclical conference regarding geometric cognition.

Fortunately, geometry-related cognitive studies, as we will see in subsequent
chapters, reach beyond those discussed so far. It is hard to deny, however, that
although cognitive science has been interested in how geometric thinking works
almost from the outset, over time the mainstream of cognitive studies began to
focus increasingly on number processing. When the term cognitive science of
mathematics became popular, most of the academic milieu identified it with
studying how the mind deals with numbers. Traversing Freudenthal’s (1971)
summary of the long-term relationship between geometry and mathematics
quoted at the end of Section 1.2, we can say that for the majority of cognitive
scientists today, mathematical cognition is synonymous with number processing.

1.7 Summary

I have described different perspectives on studying geometric thinking in the
sections above. I began from the perspective of the history of mathematics, trying
to show the evolution of geometry from the art of measuring and practical
knowledge about figures or polyhedrons to the paradise of abstraction, where
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geometric reasonings are necessarily true and lead to general conclusions. I then
adopted a philosophical perspective and presented a timeless discussion running
from Plato to Helmholtz on the sources of geometric knowledge. Afterward, I
discussed the first psychological and experimentally grounded account of
geometry by Piaget and Inhelder, which considered its subject matter from the
perspective of cognitive development. Subsequently, we moved on to an
educational perspective on the development of geometric skills, and the classic
model by van Hieles in particular, which inspired numerous curricula and
continues to do so today. Finally, in the last section, I covered the cognitive
revolution of the 1950s and investigated how studies on mathematical cognition
have changed over time. The last piece familiarized us with a research perspective
that we will explore—however with some recursions to those presented in the
previous sections—until the end of the book. In the following chapter, we will
look at the hardwired foundations of geometric cognition.
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Notes

1. This section does not aspire to be a complete historical reconstruction of the origins
of geometry. What is more, I am aware that its content is simplified and the
achievements of several Ancient mathematicians, such as Eudoxus of Cnidus, are
omitted here. Readers interested in the beginnings and further development of
geometry should refer to professional textbooks, historical monographs and collections
of essays (see, e.g., De Risi, 2015; Goodman, 2016; Heller, 2019; Merzbach & Boyer,
2011; O’Leary, 2010; Scriba & Schreiber, 2015).

2. Some traditional editions of Elements were enriched by two additional “apocryphal”
books on regular solids. Today, we know that Euclid was not their author. The
authorship of the XIV book is attributed to Hypiscles of Alexandria, and the XV
book is, at least partly, a work by Isidore of Miletus.

3. Noteworthy, the purpose of so-called definitions introduced by Euclid is to facilitate
the grasp of the meaning of geometric concepts, but they are not definitions in the
strict logical sense. Some of them are circular—they do not satisfy the requirement
that a definiens should be better known than definiendum (Merzbach & Boyer, 2011,
p- 95; Russo, 2004, pp. 320—237). For this and other reasons (see the note 4), I said
earlier that Euclid’s method is modeled on the Aristotelian idea.

4. It should be noted that Euclid’s distinction between postulates and common notions
cannot be directly identified with an Aristotelian division of principles into axioms
and postulates. According to Merzbach and Boyer (2011), “we do not know whether
Euclid distinguished between two types of assumptions. Surviving manuscripts are
not in agreement here, and in some cases, the ten assumptions appear together in a
single category. Modern mathematicians see no essential difference between an
axiom and a postulate” (p. 95). But how do Euclidean postulates and common
notions concepts difter? In A Commentary on the First Book of Euclid’s Elements, Proclus
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(1970) said that although both kinds of initial statements are self evident and easy to

<

grasp, the former take the form of effortless construction problems or tasks (i.e., “to
draw a straight-line from any point to any point”), whereas the later are obvious
assertions (i.e., “Things equal to the same thing are also equal to one another”). As
Proclus says, “a postulate prescribes that we construct or provide some simple or
casily grasped object for the exhibition of a character, while an axiom (common
notion—M.H.)) asserts some inherent attribute that is known at once to one’s auditors
(-..)- So a postulate has the same general character as an axiom but differs from it in

the manner described” (Proclus, 1970, p. 181).

. As the scope of the book is limited solely to Euclidean geometry, every reader

interested in the non-Euclidean geometries should reach for other elaborations.
The books by Greenberg (1993) and Trudeau (2009) are useful introductions.

. In opposition, analytic means that a predicate concept of a proposition is contained in

its subject concept (e.g. “all bachelors are unmarried”); a posteriori means, in turn,
that the justification of proposition depends upon empirical experience (“all
bachelors are sad”).

. Note, however, that Helmholtz—as Biagioli (2016) pointed out—"“made it clear

that geometrical assumptions cannot be tested directly. Such a test must be indirect
because of the origin of geometrical axioms. Though Helmholtz maintained that
geometrical axioms have empirical origins, he emphasized the role of cognitive
functions and inferences in the formation of geometrical notions. Geometrical
structures, as idealized constructions, can correspond only approximately to
empirical contents presently under consideration. Possibly different (e.g., non-
Euclidean) interpretations of the same phenomena cannot be excluded” (p. 52).

. Note, however, that in 1878 during discussion with Albrecht Krause, Helmholtz

uttered the famous phrase that “space can be transcendental without the axioms
being so.” See the paper by Biagioli (2013) for further analysis.

. Helmholtz was not alone in the claim that there is nothing special in Euclidean

geometry. Hans Hahn (1980), the Austrian mathematician and member of famous
Vienna Circle, stated that:

If the use of multi-dimensional and non-Euclidean geometries for the ordering
of our experience continues to prove itself so that we become more and more
accustomed to dealing with these logical constructs; if they penetrate into the
curriculum of the schools; if we, so to speak, learn them at our mother’s knee,
as we now learn three-dimensional Euclidean geometry, then nobody will
think of saying that these geometries are contrary to intuition. They will be
considered as deserving of intuitive status as three-dimensional Euclidean
geometry is today. For it is not true, as Kant urged, that intuition is a pure a
priori means of knowledge, but rather that it is force of habit rooted in
psychological inertia. (p. 101)

To make the following reconstruction of the Piaget’s and collaborators views on
mental construction of Euclidean space accessible, I intentionally skip the Piagetian
nomenclature of developmental stages and substages. Instead, I list the approximate
age at which, according to these researchers, children reach particular spatial
capacities. All the skipped details can be found in the cited original works as well as
in literature reviews. Note also that in the introduction to Piaget’s theory of spatial
development and its critique I frequently refer to the review by Clements and Battista
(1992). A book by Roth (2011) is also a very useful position.
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Note that the listed properties called by Piaget and Inhelder (1967) “topological”
were investigated earlier by Gestalt psychologists. The child at the earliest
developmental stage does not show, however, all the perceptual capacities known
from Gestalt theory. Furthermore, not all of them can be understood, in Piagetian
terms, as topological. As Piaget and Inhelder note “in opposition to the main
hypothesis of the Gestalt theory, we believe (...) that perception of ‘good
configurations’ (or simple Euclidean forms) itself evolves with age as a result of
sensori-motor activity. Eye movements, tactile exploration, imitative analysis, active
transpositions, etc., all play a fundamental part in this development” (p. 10).
Noteworthy, we will not find “connectedness” on Piaget and Inhelder’s (1967) list
of topological properties. Martin (1976a) declares, however, that “connectedness was
selected for study because of its relative importance in topology and because, as a
concept, it bears similarities to what appears to be Piaget’s notion of continuity”
(p. 29).

One should bear in mind that details of the van Hieles’ model, especially the number
of levels and their naming and numbering, have changed over time. Note that
originally the levels were not numbered from 1 but started from 0. In the following
reconstruction, I refer to the works by Clements and Battista (1992) and Battista
(2007).

The same is true about the perspective on cognitive development by Vygotsky
(1934/1986), which will be introduced in the next chapters.

Note that 1956 was not only the time of the aforementioned symposium, but also the
publication of several works, for example, by Bruner, Goodnow, and Austin (1956);
G. A. Miller (1956); Newell and Simon (1956); or Shannon and McCarthy (1956),
which rapidly became classics for the cognitive science.

Studies on geometric theorem-proving programs were “in touch” not only with
psychological analysis of verbal protocols, but also had educational recourses. For
instance, when discussing the DC model, Koedinger and J. R. Anderson (1990)
claimed that “the organization of knowledge in DC suggests an alternative task-
adapted organization of the geometry curriculum. Typical geometry curricula are
organized around topics, and focus on teaching the formal rules of geometry.
Alternatively, a curriculum could be organized around diagram configuration
schemas (...). The formal rules, then, could be taught in the context of how they are
used to prove schemas. Such a task-adapted curriculum organization can help
students remember rules and access them in the appropriate situations” (pp.
547-548).

It is noteworthy that philosophical sources of embodiment, as well as the birth of the
term itself, go back to phenomenological tradition, for instance, Merleau-Ponty’s
works (e.g., 1945/2002). Psychological sources are also much older than the 1980s.
Arguably, since Piaget (1926) emphasized the pivotal role of bodily activity, that is,
exploration of the surroundings, manipulation of objects, and internalization of
these actions, in constructing cognitive structures, he may also be considered one of
the predecessors of the embodiment (see Marshall, 2016). On the other hand,
according to Piaget’s approach, the role of the bodily activity decreases with age, and
when the child reaches so-called formal operation stage, her thinking becomes
abstract and initial embodied grounding of cognition fades. This idea contrasts with
embodied cognitive science: its theorists claim that perceptual and motor activity
constitute cognition across one’s lifespan.
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Note that among the users of right-to-left reading systems, for example, Palestinians,
the reverse SNARC effect has been revealed. Namely, they respond faster for small
numbers with their right hand and for large numbers with their left. In the case of
Israelis—who read the Hebrew language from right to left, but Arabic numbers in
the reverse order—no spatial-numerical associations reflected in RTs were initially
found (Shaki, Fischer, & Petrusic, 2009). More recently, however, Zohar-Shai,
Tzelgov, Karni and Rubinsten (2017) revealed the SNARC effect in native Hebrew
speakers.

The observant reader will have noticed that my previous book, written together with
my colleague Bartosz Brozek in Polish, is present in the set of literature references. I
should confess that its title (in English, The Mathematical Mind) is misleading, since it
promises more than we could actually give. Besides a few references to geometry, the
book is dedicated entirely to the cognitive processing of numbers and some broader
theoretical issues, however, associated mainly with numerical processing.

. I could call these “hardwired” capacities “the geometric sense” in reference to “the

number sense,” a term introduced by Dantzig (1954; see Berch, 2005 for discussion) and
popularized in contemporary studies on number processing by Dehaene (2011; see
Section 1.6 of Chapter 1). Instead, although it is perhaps just a matter of semantics, I
prefer to talk about “hardwired geometric skills” (or capacities) enabling “hardwired
geometric cognition.” I have also adopted such a convention in an earlier article (Hohol
& Mitkowski, 2019). The main reason is that the current state of research indicates that
there is no single mental system that makes knowledge about geometry possible.

. It should be noted that younger children cannot be tested in this reorientation task

since it requires independent locomotion.

. Note that Mayr (1961) proposed a distinction between proximate and ultimate

factors that correspond to different aspects of scientific explanation. While the
former refers directly to the factors underlying explaining phenomenon, the latter
concerns the evolutionary origin of the phenomenon. While Tinbergen’s (1963)
questions (1) and (2) correspond to Mayr’s proximate factors, items (3) and (4) are
close to ultimate ones (see also Table 2.1).

. Prinz (2006), for instance, noted that “systems that have been alleged to be modular

cannot be characterized by the properties on Fodor’s list. At best, these systems have
components that satisty some of Fodor’s criteria. There is little reason to think that
these criteria hang together, and, when considered individually, they apply to a
scattered and sundry assortment of subsystems. It is grossly misleading to say that the
mind is modular. At best, the mind has a smattering of modular parts” (p. 32).

. Note that the parahippocampal place area, a structure that has been perceived as

directly involved in spatial navigation, recently turned out to be insensitive to sense
(left-right) information (Persichetti & Dilks, 2016). The results of a recent
neuroimaging study by Dillon and colleagues (2017) show that this structure is
sensitive to relative length and angle but only in the case of pictures depicting scenes
(not objects). This finding demonstrated that the main role of this structure, as the
authors note, “may not be for navigation through a scene, but rather for scene
categorization (e.g., recognizing a place as a kitchen or beach), consistent with the
classic evidence that shape analysis is central to object recognition and categorization”

(p- 8).

. Many advocates of evolutionary psychology, such as Pinker (2009) and Buss (2009), seem

to reject this claim. Instead, they accept the adaptive lag hypothesis, which states that
the shape of contemporary cognitive systems is the result of adaptation to
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Pleistocene—not contemporary—environmental conditions and challenges. As
Cosmides and Tooby (1997) explicitly say, “our modern skulls house a stone age mind”
(p. 10). This hypothesis, however, has been criticized by many authors (see Buller,
2006; E. A. Smith et al., 2001). The necessity of studying “current utility” is in line
with a crucial assumption of human behavioral ecology that “human beings are able to
alter their behavior flexibly in response to environmental conditions in a manner that
optimizes their lifetime reproductive success” (Laland & G. R. Brown, 2006, p. 93).

. In this context it is worth mentioning the Artificial Life simulations by Ponticorvo
and Miglino (2009). They find that “different orientation abilities can emerge,
varying systematically the exposure to different environmental cues. It is possible to
evolve agents with different spatial skills by varying the frequency with which they
are exposed to different classes of stimuli during their evolution. Agents that evolve
in environments providing balanced exposure to geometric and non-geometric cues
acquire the ability to use both kinds of clue. Agents that are exposed primarily to a
single class of cue show primacy. This supports our hypothesis, according to which
geometric primacy, non-geometric primacy or successful integration between the
two classes of information depend on the relative frequencies at which organisms are
exposed to these information during their evolution and development” (p. 170).

. Note that current knowledge about the core geometric cognition of nonhuman
primates is very limited. For example, the geometry-based navigation abilities of our
closest relatives, that is, bonobos and chimpanzees, are—to the best of my
knowledge—so far completely unexplored.

. Hermer-Vazquez and colleagues (2001) treated children’s performance in a
reorientation task with alandmark as a dependent variable, while the tested independent
variables involved, among other things, age, fluid intelligence, digit span, spatial
memory span, and the comprehension and production of various spatial phrases.

. It is noteworthy that while a “mental representation” is a basic notion in both classic
cognitive science and most of its contemporary variations (see, however, note 8 in
this chapter), there is still debate as to what really deserves to be called full-blooded
representation. This question goes hand in hand with the charge that the notion is
used in interdisciplinary studies on cognition—that is, in the case of simple detectors
of features—in a too liberal manner. The reader interested in this topic should reach
for Ramsey’s (2007) book and more recent articles by Gladziejewski (2015) and
Thomson and Piccinini (2018).

. Note, however, that this is an interpretation of the initial version of Kosslyn’s
approach. The theory of mental imagery has changed over time, among others under
the pressure of neuroscientific data, but I do not have the opportunity to trace its
development here (see Ganis, Thompson, & Kosslyn, 2004; Kosslyn, 1996; Kosslyn,
Ganis, & Thompson, 2003; Pearson & Kosslyn, 2015).

. Clever Hans was an Orlov Trotter horse owned and trained by a Berlin-based
mathematics schoolteacher, Wilhelm von Osten (1838—1909). The latter was firmly
convinced that Hans manifested mathematical capacities and other humanlike
highly intellectual skills. At the beginning of the twentieth century, the alleged
talents of Clever Hans were investigated by Carl Stumpf, who was one of the
founding fathers of German experimental psychology, and his assistant Oskar
Pfungst. It turned out that the intriguing behavior of the horse was a response to
bodily cues delivered, in an unconscious and involuntary way, by the owner
(see Dehaene, 2011, pp. 4-7, and Samhita & Gross, 2013 for more details and further
discussion).
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. On the other hand, although earlier philosophical empiricists definitely rejected

nativism, the theory of perceptual symbols does not seem to exclude the innateness
(or hardwiredness, in the terms adopted in the book) of some components of mental
equipment (Markman & Dietrich, 1999).

. This does not mean, however, that we cannot point the defenders of the amodal

approach to cognition. Pylyshyn (1973; 1981), for instance, argued fervently against
the cognitive function of mental images.

. Note, however, that in contrary to J. J. Gibson (1979/2015), who claimed that

affordances are perceived directly by the observer (“directly,” means without the
need for forming mental representations), Glenberg and Robertson (1999) explicitly
“allow for the mental representation of affordances” (p. 4). It should be mentioned
here that Gibson’s ecological psychology inspired antirepresentationalist cognitive
science (see also note 8 in this chapter).

. So far in the domain of experimental psychology of mathematics, only a few studies

with the participation of professional mathematicians have been carried out. In
addition to those of Amalric and Dehaene quoted in this paragraph, here are a number
of others: Cipora, Hohol, Nuerk, Willmes, Brozek, Kucharzyk, & Necka, 2015; Sella,
Sader, Lolliot, & Cohen Kadosh, 2016; Zeki, Romaya, Benincasa, & Atiyah, 2014.

. Note that the existing terminology is fuzzy and there are also various ways of

characterizing variants of embodiment. For instance, wide-scope as well as narrow-
scope embodied cognition in Machery’s (2007) sense, introduced in Section 3.3,
could be considered moderate embodiment since both perspectives preserve a
standard view of cognitive psychology (resp. cognitive science) that cognitive
activity consists of processing the mental representations. The controversy concerns
the format of representations (modal-amodal) but not their existence (see, e.g., van
Elk, Slors, & Bekkering, 2010). In contrast, the radical theories of embodiment, such
as those proposed by Chemero (2011) and Gallagher (2017), reject a notion of mental
representation entirely. To the best of my knowledge, there are no empirically
fruitful accounts of geometric cognition within the radical embodiment (in the
above meaning), and thus I will not discuss this perspective (but see Hutto, 2019;
Roth, 2011 for the attempt to adopt an antirepresentational attitude to mathematical
thinking in general).

. Note that the term “scaftolding” was introduced by Jerome Bruner in the middle

1970s (see D. Wood, Bruner, & Ross, 1976); however, it was strongly influenced by
Vygotsky’s work (see also Lajoie, 2005; Sterelny, 2010).

. Linguistic arbitrariness can be defined as “the unpredictable mapping of form and

meaning such that, apart from a social convention to use word A for meaning B,
there is no connection between the sound of a word and aspects of its meaning”
(Dingemanse, Blasi, Lupyan, Christiansen, & Monaghan, 2015, p. 604).

Dove (2011) called his approach dis-embodiment, wherein the dash is crucial, due to
the distinction from amodal theories. According to him, “A mental symbol is dis-
embodied if (1) it is embodied but (2) this embodiment is arbitrarily related to its
semantic content. In other words, a mental symbol is dis-embodied if it involves
sensorimotor simulations of experiences that are not associated with its semantic
content” (p. 6).

. Of course, mathematicians and philosophers also attribute other features to

mathematical proof. They frequently say, for instance, that a good proof should be
economical (Hardy, 1940/2005, p. 29), explanatory (Mancosu, Jorgensen, &
Pedersen, 2006), and even beautiful (Heller, 2012; Rota, 1997).
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2. Note that Netz explicitly identifies “universalist” cognitive science with Fodor’s
(1983) modular theory of mind. Although the characteristics of core systems of
geometry (Spelke, S. A. Lee, & Izard, 2010) cannot be directly translated into a
Fodorian account, as we have seen in Chapter 2, these systems, similarly to modules,
are initially (namely in early childhood) universal to all human individuals and
shared with nonhuman animal species. Hence, Netz would probably agree that
cognitive science focused on core systems can also be called “universal.”

3. A distinction between the vertical and horizontal cultural transmission of knowledge
has been introduced by Cavalli-Sforza and Feldman (1981).

4. In Sections 4.2-4.4, I refer to our investigation presented in the article entitled
Cognitive Artifacts for Geometric Reasoning (Hohol & Mitkowski, 2019).

5. Hilbert’s axioms refer to the properties involving incidence (8 axioms), order (4
axioms; the Pasch axiom is one of them), congruence (6 axioms), parallels (1 axiom)
as well as continuity (2 axioms).

6. This is illustrated by Hilbert’s famous dictum: “One must be able to say at all times—
instead of points, straight lines, and planes—tables, chairs, and beer mugs” (Corry,
2004, p. 124).

7. Note that our knowledge about the functions of Greek diagrams was, until recently,
incomplete. As Netz noted, “the scholars who edited mathematical texts in the
nineteenth century were so interested in the words that they ignored the images. If
you open an edition from that era, the diagrams you find are not based upon what is
actually drawn in the original manuscripts. The diagrams represent, instead, the
editor’s own drawing” (Netz & Noel, 2009, p. 31). Detailed information on this
matter can be found in work by Saito and Sidoli (2012).

8. Historians of mathematics, or historians of science, in general, frequently highlighted
the existence of “the genetic link between rhetoric and the hypothetico-deductive
method,” to refer to Russo’s (2004, p. 196) words. Furthermore, as the researcher
suggests, “the scientific method, too, had its roots in oral culture, thus going back to
long before the Hellenistic period” (ibid.). There is also agreement that orality
played a very important role in Greek culture (see Thomas, 1992).

9. We critically discuss Netz’s thesis of the substitution of mathematical ontology by
diagrams in Hohol and Mitkowski (2019). According to our interpretation, Netz’s
thesis implies that diagrams, understood as cognitive artifacts, or cognitive tools (in
his terminology), are sufficient for not only mathematical practice, but also that no
semantic considerations are needed (see Latour, 2008). We propose that the thesis
about the neutrality of diagrams should be considered as being divided into two
components, namely ontological and epistemological ones. We claim that the use of
diagrams (and linguistic formulae as well) is ontologically neutral, but simultaneously,
there is no epistemological neutrality connected with using them. While diagrams
considerably constrain the permitted steps when one conducts the geometric
reasoning (proof), the issue of mathematical ontology assumed by her is still open. In
other words, diagrams do not constrain ontological choices. From the point of view
of mathematical practice (or in the context of justification), it is not crucial whether
the geometer accepts the realistic (i.e. Platonic or Aristotelian) interpretation of
geometric constructions (where a diagram serves as a model of the eternal geometric
object) or Menaechmus’ constructivist approach (where there is nothing “outside” a
geometric construction that is made by the human being). The acceptance of a
particular philosophical option may be important, however, in the context of
mathematical discoveries (Reichenbach, 1938; see also Giaquinto, 1992). It is
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noteworthy that the textual evidence does not exclude the fact that the purely
empirical nature of the earliest measurement of the Earth developed by the Egyptians
stimulated a realistic rather than a constructivist attitude on the part of Greek
mathematicians, despite the transformation of geometry into a science of abstract
concepts. This hypothesis is consistent with the fact that Greek geometry has not only
a purely mathematical face, but also a practical one (Russo, 2004). The use of
geometry in Greek architecture is an example that immediately comes to mind
(Leonardis, 2016). The use of physical tools could also stimulate a realistic attitude. In
this context, it is worth mentioning A. Seidenberg’s (1959) hypothesis that the idea of’
geometric proof emerged from constructions made by using a peg and cord. To sum
up this philosophical digression, cognitive artifacts indeed play the constraining role
in the context of mathematical justification. Thanks to them, epistemological practice
is completely isolated from questions such as “does the geometric point, namely
something ‘that of which there is no part’ (Definition 1, Book 1 of Euclid’s Elements)
exist in reality”? Regardless of how the geometer answers this question, the proof
remains correct. This is possible because the space of admissible operations when we
prove the theory is constrained by the properties of publicly shared cognitive artifacts.
These properties do not determine, however, the ontological status of geometric
objects. Our thesis implies that the necessity and generality of Euclidean geometry
are achieved in an ontologically neutral way, because these epistemic virtues emerge
from the use of cognitive artifacts.

Regarding the acquisition of formulae, Lord (1960) stated that, “When we speak a
language, our native language, we do not repeat words and phrases that we have
memorized consciously, but the words and sentences emerge from habitual usage.
This is true of the singer of tales working in his specialized grammar. He does not
‘memorize’ formulas, any more than we as children ‘memorize’ language. He learns
them by hearing them in other singers’ songs, and by habitual usage they become
part of his singing as well. Memorization is a conscious act of making one’s own, and
repeating, something that one regards as fixed and not one’s own. The learning of an
oral poetic language follows the same principles as the learning of language itself, not
by the conscious schematization of elementary grammars but by the natural oral
method” (p. 36).
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