
The cognitive foundations of geometry have puzzled academics for a long time, 
and even today are mostly unknown to many scholars, including mathematical 
cognition researchers.

Foundations of Geometric Cognition shows that basic geometric skills are deeply 
hardwired in the visuospatial cognitive capacities of our brains, namely spatial 
navigation and object recognition. These capacities, shared with nonhuman 
animals and appearing in early stages of human ontogeny, cannot, however, fully 
explain a uniquely human form of geometric cognition. In the book, Hohol 
argues that Euclidean geometry would not be possible without the human 
capacity to create and use abstract concepts, demonstrating how language and 
diagrams provide cognitive scaffolding for abstract geometric thinking, within a 
context of a Euclidean system of thought.

Taking an interdisciplinary approach and drawing on research from diverse 
fields, including psychology, cognitive science, and mathematics, this book is a 
must-read for cognitive psychologists and cognitive scientists of mathematics, 
alongside anyone interested in mathematical education or the philosophical and 
historical aspects of geometry.

Mateusz Hohol is assistant professor at Jagiellonian University, Kraków, Poland. 
His research focuses on the cognitive science of mathematics, especially on the 
psychology of numerical and geometric cognition.
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The prominent philosopher, logician, and mathematician Bertrand Russell 
confessed in his Autobiography that:

At the age of eleven, I began Euclid, with my brother as my tutor. This was 
one of the great events of my life, as dazzling as first love. I had not 
imagined that there was anything so delicious in the world. After I had 
learned the fifth proposition, my brother told me that it was generally 
considered difficult, but I had found no difficulty whatever. This was the 
first time it had dawned upon me that I might have some intelligence. 
(Russell, 2009, p. 25)

I do not know of many people (in fact, not even one) who could honestly say 
something like Russell about their first encounter with geometry. Learning 
geometry from Euclid’s original masterpiece, Elements, is not that common, either, 
even at the higher stages of one’s formal education. We also do not encounter 
Euclid’s famous fifth postulate, the one that so fascinated the 11-year-old Russell, 
unless we delve deeper into mathematics. Yet, each of us has encountered Euclidean 
plane geometry, enriched with some historically more recent inventions, such as a 
Cartesian coordinate system, at the very earliest stages of our schooling.

Besides arithmetic, most of the contemporary students and laymen alike perceive 
Euclidean geometry as the prototypical subject of mathematical education. 
Learning the principles of geometry, in a similar manner to numerical knowledge, 
plays a pivotal role in the acquisition of mathematical competencies that are useful 
in everyday life. Euclidean geometry is also extremely significant from the 
perspective of the history of mathematics. Hellenistic mathematics, including 
number theory, emerged from the use of geometric concepts and methods. Delving 
deeper still, the axiomatic-deductive approach to geometry developed by Greeks 
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and depicted in Euclid’s masterpiece established a rigorous pattern of the 
philosophical discourse, or the rational thinking in general, for many centuries. 
Moreover, many prominent scientists admit that geometric imagination plays a 
great role in their mathematical thinking. Sir Roger Penrose (2004, 2018), for 
instance, used to say that he like considering problems geometrically. The same is 
true of Richard Feynman, as neatly described in his biography by Gleick (2011):

In high school he had not solved Euclidean geometry problems by tracking 
proofs through a logical sequence, step by step. He had manipulated the 
diagrams in his mind: he anchored some points and let others float, 
imagined some lines as stiff rods and others as stretchable bands, and let the 
shapes slide until he could see what the result must be. These mental 
constructs flowed more freely than any real apparatus could. Now, having 
assimilated a corpus of physical knowledge and mathematical technique, 
Feynman worked the same way. The lines and vertices floating in the space 
of his mind now stood for complex symbols and operators. They had a 
recursive depth; he could focus on them and expand them into more 
complex expressions, made up of more complex expressions still. He could 
slide them and rearrange them, anchor fixed points and stretch the space in 
which they were embedded. Some mental operations required shifts in the 
frame of reference, reorientations in space and time. The perspective would 
change from motionlessness to steady motion to acceleration. (p. 161)

These insights correspond with the frequently cited, and at the same time highly 
controversial, observation of Henri Poincaré (1929) that mathematicians can be 
divided into two camps: analysts and geometers, wherein it “does not prevent the 
one sort from remaining analysts even when they work at geometry, while the 
others are still geometers even when they occupy themselves with pure analysis” (p. 
210; see Hadamard, 1945). All of this makes geometric thinking a fascinating topic.

Like any human intellectual enterprise, Euclidean geometry also emerges 
from cognitive processes and the activity of our brains. Nevertheless, the 
cognitive origins of geometry remained puzzling for a long time. A cognitive 
revolution that occurred in the mid-1950s, together with the later development 
of a new discipline called cognitive science, made this subject explorable in a 
scientific way. Nevertheless, the foundations of geometric cognition remain 
mostly unknown even today for the majority of mathematicians, historians of 
science, educational researchers, philosophers, psychologists, and cognitive 
scientists. Furthermore, even those of the latter who are interested in mathematical 
cognition focus primarily on the cognitive processing of numbers and calculations. 
This is manifested in the fact that the problem of geometry is essentially absent 
in most of the fundamental monographs in the field of mathematical cognition. 
We can observe a similar pattern in the cases of scientific conferences and 
journals. In contrast to the processing of numbers, there is no cyclical conference 
or peer-reviewed journal specializing in geometric cognition.
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Although I have decided to limit my investigation in this book to Euclidean 
geometry, developed in ancient Greece but still taught to some degree to children 
today, starting in primary school, identifying crucial properties of geometric 
cognition remains a difficult task.1 Despite the fact that children and the majority 
of educated adults are unfamiliar with proving theorems in an axiomatic-
deductive fashion, leaving this method of reasoning aside entirely would make 
my investigation grossly incomplete. The proof is “a hard core” of Euclid’s 
contribution to the whole of mathematics. According to this fact, I try to explain 
not only where elementary manifestations of geometric cognition, such as 
sensitivity to angle, length (distance), and sense (left-right direction) come from, 
but also how the processing of abstract geometric concepts works and how 
Euclidean proofs that provide general results in a necessary way are cognitively 
possible at all. My proposal for sketching the account of the cognitive foundations 
of Euclidean geometry involves the following desiderata:2

(D1) The account should recognize whether the cognitive capacities that 
are necessary to engage with Euclidean geometry are “hardwired,” or 
whether they are rather constructed through individual learning.
(D2) The account should describe how these capacities are combined 
during ontogeny into a system of abstract geometric concepts.
(D3) The account should elucidate how the mind/brain of the human 
being (especially if it is constrained by the body and environment) is able 
to process abstract concepts at all.
(D4) The account should elucidate the geometric proof characterized by 
epistemic virtues: compelling power (or necessity) and generality of 
providing results.

Let me briefly explain how I intend to explore the above desiderata in the following 
chapters. In Chapter 1, I investigate different perspectives on geometric thinking, 
involving the history of mathematics, philosophy, early experimental psychology, 
education research, and, finally, interdisciplinary cognitive science, which will be 
further explored in subsequent chapters. This review chapter, which is the most 
extensive, will familiarize the reader with the crucial notions of Euclidean 
geometry and existing approaches to mathematical cognition, as well as the 
research problems that are particularly associated with the desiderata (D1–D4).

In Chapter 2, I attempt to identify the “hardwired” foundations of geometric 
cognition, namely those occurring in human beings at an early developmental 
stage and shared with nonhuman animals. Adopting Tinbergen’s strategy of 
explanatory questions I show that the sensitivity to elementary Euclidean 
properties is not a uniquely culture-dependent human skill that emerges when 
learning geometry in school. This sensitivity is observed in the context of the 
recognition of shapes and spatial navigation in many animal species and human 
infants in many cultures. Therefore, I defend a version of the “hardwiredness” of 
elementary geometric cognition (D1), elaborating upon this notion by grounding 
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it in the findings of various branches of cognitive science and related fields as 
cognitive and developmental psychology, neuroscience, evolutionary biology, 
ethology, comparative cognition, and behavioral robotics. Bearing in mind that 
only humans have developed, and are capable of assimilating, full-blooded 
Euclidean geometry, in this chapter I also investigate the limits of hardwired 
geometry and how children go beyond them. Thereby, I show that the process 
of the acquisition of the abstract conceptual structures of geometry is first 
mediated at the preschool level by enculturation with spatial language and map-
like scale models (D2).

It is a truism to say that the concepts of Euclidean geometry are abstract in 
nature (D3). On the other hand, there is much evidence to show that the body 
and physical surroundings constrain the thinking of human beings. Therefore, in 
Chapter 3, I investigate how the processing of abstract concepts, something 
which seems to require us to reach beyond our proximal experience, is at all 
cognitively possible. I start by discussing the classic view of computational 
cognitive science on conceptual processing and show that it faced severe 
challenges (e.g., the symbol grounding problem) that stimulated cognitive science 
to shift the research paradigm. In this context I describe the emergence of 
embodied cognitive science while simultaneously claiming that in its strong 
version, where it assumes that the sensorimotor system of the brain both serves as 
the conceptual vehicle and determines the conceptual content, it is ill suited for 
the elucidation of geometric abstracts. I defend the claim that (D3) can be fulfilled 
by adopting the moderate version of embodiment, one that makes room for the 
shaping of the content of abstract concepts by internalizing natural language. 
Following Lev Vygotsky and contemporary theorists of the moderate version of 
embodied cognitive science, I show that, by virtue of its social nature and 
computational properties, human language serves as scaffolding for further 
learning. In other words, it is a cognitive artifact that makes establishing and 
using abstract concepts cognitively possible.

The above-summarized chapter does not directly answer the question of the 
origin of “the power of proof,” or the epistemic virtues of Euclidean geometry. 
Therefore, in Chapter 4, I seek a cognitive base for the compelling power (or 
necessity) of Euclidean reasonings and the generality of provided results (D4). To 
this end I shift the perspective of my investigation from experimentally oriented 
cognitive science to the cognitive history of geometry as developed by Reviel 
Netz. I make use of the notion of the cognitive artifact introduced in Chapter 3 
and trace the role of two intertwined inventions of the ancient Greeks, namely 
lettered diagrams and well-regulated professional language, which helped to 
build a cognitive niche within which the necessity and generality of geometric 
proofs became possible. In this context, I hypothesize that the professional 
language of geometry—one that is mutually interconnected with diagrams 
through letters associated with geometric points—is characterized by the 
computational properties enhancing the hardwired cognitive capacities of the 
human being to a greater extent than ordinary or everyday language. At the end 
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of the book, I list the limits of my investigation and outline the perspectives for 
further research on geometric cognition.

Notes

	 1.	 Cognitive scientists sometimes do not perceive geometry as a phenomenon to be 
explained, or explanandum, but they use geometric or topological structures for 
modelling cognitive processes and representations. Geometry is used to explain 
mental phenomena, or plays a role in the explanans, for example, in Gärdenfors’ 
(2004, 2014) theory of conceptual spaces.

	 2.	 Note that the following list is a modified version of one introduced previously in our 
article (Hohol & Miłkowski, 2019). The current proposal is undoubtedly not final, 
and does not pretend to be complete. Assuredly, the desiderata for the study of 
geometric cognition will change during the evolution of the cognitive science of 
mathematics and related fields.
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Sobańska, Antonino Vallesi, Klaus Willmes, Barbara Webb, Piotr Winkielman, 
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1.1  Introduction and synopsis of the chapter

The purpose of this chapter is to provide an overview of different perspectives on 
geometric thinking. My ambition is not only to tell the story (actually very incomplete) 
of the various faces of geometric thinking, including perspectives of the history of 
mathematics, philosophy, early experimental psychology, education studies, and 
finally interdisciplinary cognitive science, but also to establish “a searching space,” 
which allows us to identify some crucial aspects of geometric cognition on the 
basis of the achievements of different (but related) perspectives. My further goal is 
also to familiarize us with terms that we will meet in the next chapters.

The chapter proceeds as follows. First (Section 1.2), I will introduce the roots of 
geometry, showing that Euclid’s Elements is founded on the efforts of generations of 
mathematicians who brought geometry to the paradise of abstraction. Subsequently, 
in Section 1.3, I will show that the geometric intuition is a locus classicus of European 
philosophy stretching from Plato to Helmholtz. The considerations of the latter—
Helmholtz—were scientifically inspired while still philosophical in nature. In 
Section 1.4, I will tackle the first full-blooded experimentally oriented account of 
the development of geometric cognition, as elaborated by Piaget and Inhelder. 
Following this, I will still focus on developmental issues, but now perceived from 
the educational perspective. Thus, in Section 1.5, I will introduce and discuss the 
classic model of the emergence of geometric skills introduced by van Hiele and van 
Hiele-Geldof. In Section 1.6, I will present the cognitive revolution that allowed 
for the development of a broader research perspective on geometric cognition, one 
that will serve as our companion throughout the remainder of the book. Discussing 
cognitive science studies on mathematics, I will show that during its own evolution, 
this field shifted toward numerical cognition and left Euclidean geometry by the 
wayside. Section 1.7 is a summary.

1
GEOMETRIC THINKING, THE 
PARADISE OF ABSTRACTION
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1.2  The geometric roots of mathematical thinking

Euclid’s splendid masterpiece, the Elements, unquestionably set the agenda of the 
subsequent development of European mathematics and established the pattern of 
mathematical rigor for many centuries to come. Euclid’s system did not, however, 
emerge from a vacuum, but summarized, or rather developed further, the 
achievements of his predecessors. Thus, prior to discussing it, we should introduce 
the distant, pre-Euclidean origins of geometry.1 At the very beginning, however, 
we have to stipulate that if we accept the broadest possible, and at the same time 
very intuitive, definition of geometry, which states that it is the science of space, the 
times to which we withdraw did not contain anything akin to institutional 
science. Instead, the comprehension of space was a very practical enterprise; that 
is, it was connected with architecture and land measurement. In this sense, one 
can say that the history of geometry begins before geometry.

The oldest material premises for the use of geometric regularities by man date 
back to the earliest megalithic cultures (Dzbyński, 2014). The ancient Egyptian 
constructions that are partially preserved to this day, such as the temple of Abu 
Simbel or the pyramids, as well as Babylonian ziggurats, reveal a sophisticated 
sensitivity to geometric form and allow us to suppose that their constructors 
were familiar with at least some rudimentary geometric knowledge (O’Leary, 
2010). There are also historical premises that Egyptians were highly proficient in 
techniques for land measurement involving knowledge about geometric 
relationships. One of the earliest mentions concerns the determination of the 
amount of land tax in relation to the annual flooding of the Nile. Herodotus 
(2009), the fifth-century BC Greek historian, described the following story of 
nineteenth-century BC pharaoh Sesostris, also written as Senusret III, who 
reigned in Egypt during the Middle Kingdom period:

This king distributed the land to all the Egyptians, giving an equal square 
portion to each man, and from this he made his revenue, having appointed 
them to pay a certain rent every year: and if the river should take away 
anything from any man’s portion, he would come to the king and declare 
that which had happened, and the king used to send men to examine and 
to find out by measurement how much less the piece of land had become, 
in order that for the future the man might pay less, in proportion to the 
rent appointed: and I think that thus the art of geometry was found out and 
afterwards came into Hellas also. (Book II, p. 109)

Although it is far from clear whether the story is true—Herodotus stated that the 
priests of Thebes had informed him that it was the case—the Egyptian origins of 
geometry are also mentioned in other Greek historical sources. The story related 
by Herodotus reveals the source of the Greek term γεωµετρία, which literally 
means the measurement of the Earth. Before we consider how geometry was 
transmitted from Egypt to Greece, as the Greek historian suggests, it is worth 
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emphasizing that Egyptian knowledge about figures or polyhedrons was strictly 
technical and took the form of practical rules (Merzbach & Boyer, 2011). 
Applying these rules to particular problems did not lead the Egyptians to invent 
abstract mathematics with the necessary and general arguments characteristic of 
Euclidean geometry. Instead, as Russo (2004) has summed up, Egyptian 
achievements

can be called mathematical only in that their object is solving problems 
that we would call arithmetical or geometric; they completely lack the 
rational structure that we associate with mathematics today. They contain 
recipes for solving problems—for example, calculating the volume of a 
truncated pyramid or the area of a circle (the latter being, of course, 
unintentionally approximate)—but there is no sign of anything like a 
justification for the rules given. At that stage, then, fairly elaborate notions 
beyond the integers had already been developed, including many plane and 
solid figures, area, and volume; problem-solving methods were passed 
down the generations; but the correctness of the solutions was based solely 
on experience and tradition. This was very far from being a science in the 
sense we have given the word. It was simply a part of that enormous store 
of empirical knowledge that enabled the Egyptians to achieve their famous 
technological feats; it was methodologically homogeneous with the rest of 
such knowledge, and transmitted in the same way. (p. 32)

According to the traditional view, the art of geometry came to Greece together 
with Thales of Miletus, called the first Greek philosopher, who lived at the turn 
of the seventh and sixth century BC (see Aufrere & Marganne, 2019; O’Grady, 
2002). Because his writings have not survived, this opinion is based on later 
documents, such as a treatise by the fifth-century Neoplatonic philosopher 
Proclus, who refers to the now-missing history of mathematics by Eudemus of 
Rhodes (fl. ca. 320 BC). According to this tradition, Thales traveled to Egypt, 
where he became familiar with a technique for determining the height of pyramids 
on the basis of the measurement of their shadows. He also visited Babylon, where 
he learned a proposition of elementary geometry which stated that when A, B, 
and C are distinct points on a circle and the line AC is a diameter, then the angle 
ABC is a right angle, something which is known today as Thales’ theorem (see 
Figure  1.1). Proclus (1970) claims, however, that Thales also made original 
contributions to geometry: “He made many discoveries himself and taught his 
successors the principles for many other discoveries, treating some things in a 
more universal way, others more in terms of perception” ([8.74], 65.7–11).

The discoveries mentioned by the Neoplatonic philosopher concern the 
following geometric facts: “a circle is bisected by a diameter,” “the base angles of 
an isosceles triangle are equal,” “the pairs of vertical angles formed by two 
intersecting lines are equal,” and “if two triangles are such that two angles and a 
side of one are equal, respectively, to two angles and a side of the other, then the 
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triangles are congruent.” The most impressive contribution to geometry that is 
traditionally attributed to Thales seems to be, however, “treating some things in 
a more universal way.” The point is that he allegedly not only knew the above 
facts, but he was also supposed to demonstrate them deductively. Simultaneously, 
Thales supposedly introduced a principle that similar figures, regardless of their 
material substance, have the same geometric properties. Thus, Thales of Miletus 
is sometimes designated not only as the first Greek philosopher but also the first 
full-blooded geometer. One must be aware, however, that this claim is of a 
semilegendary nature.

Although Thales is portrayed as the first geometer, the tradition says that 
Pythagoras, the prophet, mystic, and philosopher of Samos (6th–5th century BC), 
established the first Greek mathematical school (see Kahn, 2001). He presumably 
trod the same well-worn road to Egypt and Babylon where, like Thales, he was 
able to learn the art of geometry firsthand. Transferring these mathematical ideas 
to Greece, he gave them an abstract and general form. One of the essential 
achievements attributed to him is the discovery of the theorem, known today as 
Pythagoras’ theorem, that the square built on the triangle’s side opposite to a 
right angle is equal to the sum of two squares formed on the other two sides of 
the triangle (see Figure 1.2). Even though the geometric relationship was 
imported rather than discovered by Pythagoras, neither Egyptian or Babylonian 
geometers were aware of its proof, while the philosopher of Samos was supposed 
to be the first to demonstrate it. In a more general perspective, as Proclus (1970) 
said, “Pythagoras transformed the philosophy of geometry into the form of a 
liberal education, searching in an upward direction for its principles and 
investigating its theorems immaterially and intellectually” ([8.74], 65.7–66.8). In 
a manner akin to Thales, Pythagoras’ contribution to geometry also has 
semilegendary character.

Contemporary historians agree that Pythagoras established a school or 
something akin to a secret association in Croton around 530 BC, but its character 
was initially religious. One of the central points of Pythagorean doctrine was 
number mysticism, a connected conviction that numbers constitute “the elements 

FIGURE 1.1  Thales’ theorem. According to Thales’ theorem, if A, B, and C constitute 
distinct points on a circle where the line AC is a diameter, then the angle ABC is a 
right angle.



Geometric thinking, the paradise of abstraction  5

of all things” (Aristotle, 2009a, p. 986a). The discovery of incommensurability 
undermined this conviction, triggering both a religious and mathematical crisis 
(Knorr, 1974). It turned out that there are magnitudes, for example, lengths of a 
diagonal of a square, characterized by irrational numbers. The crisis was 
overcome by means of the deployment of geometric algebra, namely replacing 
numbers and numerical operations with geometric figures such as line segments, 
rectangles, and parallelepipeds. We will see more of the technical aspects in the 
later part of this section, but for now let us emphasize the fact that, in resolving 
the crisis of incommensurability, the Pythagoreans transformed geometry into a 
fundamental branch of Greek mathematics.

The detachment of geometry from “concrete things” did not happen 
overnight, but instead took the form of a continuous process. Furthermore, 
instead of being the achievement of a single person, it should be assigned to the 
disciples and followers of Pythagoras as well. Even though the scientific part of 
the secret community that focused primarily on mathematics emerged relatively 
late, the initial treatment of mathematics as a spiritual exercise and component of 
worship could help encourage, or even drive, the abstract investigation of 
mathematical relationships and, consequently, conducting demonstrations of 
geometric theorems (A. Seidenberg, 1961). It is also possible that the use of 
specific tools or artifacts played a crucial role in the emergence of abstraction and 
deduction in Greek philosophy.

The contribution of the Pythagoreans comprises the introduction of two of 
the tools used in Euclidean geometry to this day, namely elements of technical 
language and a special kind of drawings. Regarding the former, the Pythagoreans 
introduced a few well-known concepts for first time such as “straight line,” 
“line segment,” “plane,” and “angle.” It was also noteworthy that they 
distinguished between various kinds of angles, for example, “inscribed angle” 
and “central angle,” and defined mathematical terms. Regarding the latter 
tool, drawings of geometric shapes, known to us today as diagrams, were 
undoubtedly used earlier, and we can find them in various cultures throughout 

FIGURE 1.2  Pythagoras’ theorem. According to Pythagoras’ theorem, the sum of the 
areas of the two squares built on the legs a and b is the same as the area of the square 
built on the triangle’s side c opposite the right angle.
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the ancient world (notably, the Greek term διάγραµµα literally means “figure 
marked out by lines” [cf.  Netz, 1999b, p. 35]). However, Pythagoreans 
presumably invented scale drawings and understood that increased or decreased 
figures might be similar, holding the same geometric properties. Moreover, at 
least according to tradition, Hippocrates of Chios, a fifth-century BC Greek 
mathematician who belonged to the Pythagorean school before being expelled 
for the terrible crime of teaching for money, was the first to use letters to mark 
points on geometric diagrams (Merzbach & Boyer, 2011, p. 61). I will return to 
technical language and lettered diagrams in Chapter 4, where I will try to 
interpret them as cognitive artifacts, namely tools affecting, or even shaping, 
geometric cognition.

As we have seen, Thales and Pythagoreans transformed the art of the 
measurement of concrete objects and fields into the science on space, which uses 
abstract concepts and demonstrates general theorems. As Merzbach and Boyer 
(2011) say, “with them, mathematics was more closely related to a love of wisdom 
than to the exigencies of practical life” (p. 45). Although the first deductive 
reasoning is credited to Thales and Pythagoreans, they were certainly not 
familiar with the axiomatic-deductive method, according to which theorems 
should be derived from a set of well-defined axioms (or postulates) under the 
rigor of necessity-preserving rules. The axiomatic-deductive method originated, 
however, outside the science of space, having been initiated by Aristotle.

Aristotle was no mathematician, but his contribution to logic and scientific 
methodology strongly influenced the development of geometry (see Heath, 
1970). In his Posterior Analytics, Aristotle (2009b) stated that all reliable knowledge 
consists of two kinds of true propositions (statements): self-evident ones, which 
do not require further justification, and propositions demonstrated “by showing 
that it is a logical consequence of propositions already known to be true” 
(Murawski, 2010, p. 41). According to Aristotle, each theorem contains 
components of several kinds: the definitions of the terms introduced in a theory; 
the principles, assumed without a proof (some of them, called “the axioms,” 
characterize the fundamental properties of magnitudes, and others, called 
“postulates,” refer to the entities studied by the specific discipline); and, last but 
not least, existential statements postulating the existence of objects specified by a 
theorem. These components, as Aristotle claimed, should be used in 
demonstrations, namely chains of immediate inferences where propositions are 
transformed without losing their truth value.

The axiomatic-deductive method that was modeled on the Aristotelian idea 
was incorporated into geometry on the largest scale in the Greek world by Euclid 
(Mueller, 1981; Murawski, 2010). The geometric reasonings enshrined in his 
Elements were recognized as a model of intellectual rigor and a prototype of 
scientific thinking for many centuries, mainly as a result of two epistemic virtues: 
these reasonings are necessarily true and lead to universal results. We know, 
however, very little about the life of the author of Elements. Frankly, we do not 
even know when and where exactly he was born and died. Frequently it is 
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assumed that he lived between 325 and 270 BC and studied at Plato’s Academy, 
or at least under the supervision of one of Plato’s apprentices—according to 
Proclus (1970), “Euclid belonged to the persuasion of Plato and was at home in 
this philosophy; and this is why he thought the goal of the Elements as a whole to 
be the construction of the so-called Platonic figures” (p. 68). The author of 
Elements is called Euclid of Alexandria since he worked in this city under the 
reign of Ptolemy I Soter. The tradition says that Ptolemy asked Euclid to indicate 
a shorter way to understand geometry than through studying the whole of the 
Elements. The geometer apparently answered, as Proclus (1970) reported, “there 
was no royal road to geometry” (p. 68). Even though we do not have many 
biographical details about Euclid, we have at our disposal more of his treatises 
than of any other Greek mathematician (Merzbach & Boyer, 2011). In addition 
to Elements, the following treatises by Euclid have survived to our times: Data 
(the content is interpreted as supplementary material to a couple of first books of 
Elements), On Division of Figures (as the title suggests, it concerns the division of 
plane configurations into parts), Phenomena (on spherical astronomy), and Optics 
(on the geometry of direct vision). Let us look at the structure of the content of 
Euclid’s greatest work.

Elements consists of 13 books or—to say more modernly—chapters.2 The first 
six books introduce elementary plane geometry and geometric algebra. To briefly 
illustrate how geometric algebra works, let us introduce Proposition 1 of Book 2, 
which states that “if there are two straight-lines, and one of them is cut into any 
number of pieces whatsoever, then the rectangle contained by the two straight-
lines is equal to the (sum of the) rectangles contained by the uncut (straight-line), 
and every one of the pieces (of the cut straight-line)” (I use the translation of 
Euclid’s Elements by Fitzpatrick, 2008). This assertion is a geometric equivalent of 
the distributive law, which is today expressed in the following form:

a b c d ab ac ad( )+ + = + +

Let us introduce further books. The next three concern the geometric theory 
of numbers, according to which each natural number is conceptualized by a line 
segment and multiplication is represented in terms of measuring. The 10th book 
covers the problem of incommensurables, and the final three books deal with the 
geometry of Platonic solids.

Book 1 opens with a list of 23 definitions (further definitions are introduced 
in the following books). The first three define “a point,” “a line,” and “the 
extremities of a line”: “1. A point is that of which there is no part,” “2. And a line 
is a length without breadth,” and “3. And the extremities of a line are points.”3 
Immediately after definitions, Euclid lists principles that involve two sets: five 
postulates and five common notions.4 After them, the author presents geometric 
theorems as so-called “propositions.” They involve constructions that allow the 
reader to understand geometric relationships or—according to the other 
interpretation—bring these relationships into being. I will return to this issue in 
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the next section. For now, let us list “a methodological skeleton” of Book 1 of 
Elements, namely all of the postulates and common notions.

Postulates:

	1.	 Let it have been postulated to draw a straight-line from any point to any point.
	2.	 And to produce a finite straight-line continuously in a straight-line.
	3.	 And to draw a circle with any center and radius.
	4.	 And that all right angles are equal to one another.
	5.	 And that if a straight-line falling across two (other) straight-lines makes 

internal angles on the same side (of itself whose sum is) less than two right-
angles, then the two (other) straight-lines, being produced to infinity, meet 
on that side (of the original straight-line) that the (sum of the internal angles) 
is less than two right-angles (and do not meet on the other side).

Common notions:

	1.	 Things equal to the same thing are also equal to one another.
	2.	 And if equal things are added to equal things then the wholes are equal.
	3.	 And if equal things are subtracted from equal things then the remainders are equal.
	4.	 And things coinciding with one another are equal to one another.
	5.	 And the whole [is] greater than the part.

We do not have room for a detailed analysis of the content, origins, and 
importance of all of Euclid’s initial statements. It suffices to note that the vast 
majority of postulates and common notions are well grounded in tradition, 
transparent or even self-evident, and easy to grasp—one can “see” them quickly—
and thus they did not raise reservations either in ancient Greece or in later times. 
The situation is dramatically different in the case of the famous fifth postulate, 
also known as the parallel postulate. Since the postulate seemed not to be self-
evident and instead rather complicated, Proclus (1970), who did not deny its truth, 
claimed that “this ought even to be struck out of the Postulates altogether” (p. 
150). For two millennia, successive generations of mathematicians made attempts 
to prove the fifth postulate using the remaining four ones; however, these efforts 
turned out to be unsuccessful. In 1868, Italian mathematician Eugenio Beltrami 
finally demonstrated the independence of the postulate from the others listed in 
Elements (see Bardi, 2008 for an accessible introduction). Furthermore, in the first 
half of the nineteenth century, János Bolyai, Nikolai Ivanovich Lobachevsky, and 
Carl Friedrich Gauss independently discovered the possibility of construction of 
logically consistent geometric systems by replacing the parallel postulate with 
other ones. This discovery paved the way for the development of so-called non-
Euclidean geometries, that is, hyperbolic and elliptic geometry.5

Let us return to Ancient Greece and try to determine the scientific status of 
Euclid’s Elements. On the one hand, it is called a mathematical treatise, which, 
thanks to the author’s original discoveries, established or founded full-blooded 
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geometry. On the other hand, we know well that Elements served as a mathematical 
textbook already during the author’s lifetime and for about two millennia 
afterward. There is virtually no contradiction in perceiving Euclid’s work both 
as a treatise and a textbook (note that the distinction between these writing 
forms is new); however, according to George Sarton, we should avoid two 
extreme interpretations. The first interpretation, according to Sarton (1959), 
speaks about Euclid as the originator or founding father of geometry:

If we take Egyptian and Babylonian efforts into account, as we should, 
Euclid’s Elements is the climax of more than a thousand years. One might 
object that Euclid deserves to be called the father of geometry for another 
reason. Granted that many discoveries were made before him, he was the 
first to build a synthesis of all the knowledge obtained by others and himself 
and to put all the known propositions in a strong logical order. That 
statement is not absolutely true. Propositions had been proved before 
Euclid and chains of propositions established (…). In short, whether you 
consider particular theorems or methods or the arrangement of the 
Elements, Euclid was seldom a complete innovator; he did much better and 
on a larger scale what other geometers had done before him. (pp. 23–24)

The second interpretation depicts Euclid only as “a textbook maker who invented 
nothing and simply put together in better order the discoveries of other people” 
(p. 24). In Sarton’s opinion, both interpretations—Euclid as an originator of 
geometry and Euclid as a textbook writer—are mistaken, since, as he continues:

A good many propositions in the Elements can be ascribed to earlier 
geometers, but we may assume that those which cannot be ascribed to 
others were discovered by Euclid himself; and their number is considerable. 
As to the arrangement, it is safe to assume that it is to a large extent Euclid’s 
own. He created a monument which is as marvelous in its symmetry, inner 
beauty and clearness as the Parthenon, but incomparably more complex 
and more durable. (ibid, p. 24)

According to Sarton (ibid., pp. 24–36), Euclid’s original discoveries enshrined in 
Elements involve, at least, formulating the famous fifth postulate, which—as we 
have already seen—stimulated mathematical investigations for two millennia; 
introducing several theorems of number theory, such as the existence of infinitude 
of primes; and formulating the fundamental laws of geometric optics, to list only 
the law of reflection.

The uniqueness of Euclid’s genius lies also, or perhaps primarily, in the fact 
that he was capable of constructing both a versatile and a homogeneous “logical 
space.” It is versatile, since it not only covers elementary plane geometry and 
solid geometry, but also such mathematical fields as algebra and theory of 
numbers. It is simultaneously homogeneous since all of these fields are 
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comprehended in geometric terms. Thanks to the versatility and homogeneity of 
Euclid’s masterpiece, as the Dutch mathematician Hans Freudenthal (1971) said, 
“for a long time mathematics has been synonymous with geometry” (p. 417). 
Elements has undoubtedly affected the mathematical thinking of successive 
generations, and its impact extends beyond mathematics—the discussion on the 
sources of Euclidean geometry is a classical theme in European philosophy. This 
debate has worn various masks from the ontological to the epistemological. In 
the next section, we will consider the recurring theme of these discussions, 
namely intuition as a source of geometric knowledge.

1.3  Geometric intuition as a philosophical locus classicus

“Let no one ignorant of geometry enter herein” (ἀγεωμέτρητος μηδεὶς εἰσίτω). 
According to tradition, this motto was engraved at the entrance to Plato’s 
Academy, and it expresses the notion that mathematics alone delivers a necessary 
prerequisite of philosophy: training in abstract thinking. This common 
interpretation goes hand in hand with the traditional account that Plato was a 
highly demanding master who required from his philosophical apprentices the 
study of geometry for at least 10 years, while the course of philosophy lasted only 
5. Although he lived before Euclid, already in Plato’s lifetime (approximately 
427–347 BC), geometry was a sophisticated matter, and adepts had to put in a lot 
of effort to achieve mastery.

Plato did not, however, claim that recognizing all geometric truths is solely 
the merit of extensive training. On the contrary, he believed that man is capable 
of intuitively and effortlessly grasping rudimentary knowledge on geometric 
points, line segments, angles, and relationships between figures. Plato (2009a) 
illustrates it in one of the Socratic dialogues entitled Meno, where the uneducated 
slave boy conducts deductive reasoning that leads to the necessary conclusion 
that a square built on the diagonal of a given square is double. The demonstration 
takes into account that the bigger square is formed of four triangles, wherein each 
of triangles is equal to half of the given square (Figure 1.3).

FIGURE 1.3  The geometric proof by Plato’s slave boy. The figure is patterned after 
Russo (2004, p. 37) and visualizes how the geometrically naïve slave boy described 
by Plato in Meno proved that the square built on the diagonal of a given square is 
double. His informal reasoning refers to the fact that the bigger square is formed of 
four triangles, wherein each of triangles is equal to half of the given square.
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Although Plato was fully aware that achieving mathematical mastery requires 
long-term training, he believed that the human being is equipped with an 
“insight,” or “intuition,”—an innate, or hardwired, sense of mathematical ideas 
that constitute a foundation of further practice and it is not an outcome of “habit, 
practice or convention” (see Parsons, 1980, p. 146). Thanks to the intuition, each 
adept of geometry (such as the slave boy) is capable not only of conducting simple 
deductive reasoning but also of perceiving the self-evident truthfulness of 
mathematical axioms (postulates and common notions). Such a view is 
complemented by Plato with a claim expressed in The Republic (Plato, 2009b) 
that “the knowledge at which geometry aims is knowledge of the eternal, and 
not of aught perishing and transient” (527b). The knowledge, accessible through 
Platonic intuition, is persistent, unchanging, and necessary, and therefore it is 
discovered, rather than being invented or arbitrarily created by man (see 
Wedberg, 1955, pp. 63–82). According to Plato, the geometric objects constructed 
by mathematicians by means of diagrams and linguistic expressions are not 
appropriate objects of geometric knowledge. As Detlefsen (2005) has summed up 
the discussion, “they could at best serve as representations of real objects and 
provide some sort of practical guide to their knowledge” (p. 243).

Although Euclid was educated in the Academy, or at least had contact with 
Platonism, in his Elements, as well as other treatises, he avoided direct philosophical 
declarations, and thus we do not know much about his views on the prerequisites 
of geometry and the meaning of geometric constructions. We do know, however, 
that these issues were extensively discussed by Greek philosophers, such as 
Proclus, who was influenced both by Plato and Euclid. This fifth-century BC 
Neoplatonist called the Successor was one of the last heads of Academy (see 
D’Hoine & Martijn, 2017 for an overview) and the author of A Commentary on 
the First Book of Euclid’s Elements (1970)—a treatise to which we have referred 
many times and will do so further—which refined, or developed further, the 
Platonic philosophy of mathematics (O’Meara, 2017).

Referring to other Platonists, namely Speusippus and Amphinomus, Proclus 
stated that the construction of geometric objects is not in the making of them, 
but rather understanding them, that is, “taking eternal things as if they were in 
the process of coming to be” (1970, p. 78; see Bowen, 1983). In other words, 
constructions allow man to grasp what has always existed. Proclus believed that 
perfect geometric objects and their relationships cannot be derived or abstracted 
by man from their imperfect and deficient material shadows. Consequently, he 
said that Euclidean constructions are possible thanks to the contemplation of 
intelligible geometric principles that are innate, albeit initially hidden, in the 
soul. As O’Meara (2017) notes:

Mathematics starts from this innate knowledge, developing it on the level 
of articulated logical reasoning (discursive thought) in the form of concepts 
which are defined and propositions (axioms) which are stated. These first 
articulations of innate knowledge are then combined so as to deduce their 
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consequences, i.e., the conclusions that can be derived from them. 
Mathematics is thus a “projection” in discursive thought of the innate 
knowledge of soul. Mathematical objects both constitute soul, as intelligible 
principles, and are constituted by soul, as the concepts, propositions, and 
arguments which soul elaborates (or “unrolls,” a favourite image) by 
rational methods from these principles. (p. 172)

This does not mean, however, that all Hellenistic philosophers agreed with the 
Platonic claim that the foundations of geometric knowledge are innate. Aristotle, 
for example, stated that mathematical entities are intellectually abstracted from 
physical objects, and thus geometric knowledge has an empirical character 
(Heath, 1970). The same is true regarding the status of geometric constructions: 
not everyone agreed that geometric constructions are representations, or 
reflections, of eternal geometric objects. The fourth-century BC mathematician 
Menaechmus, a personal friend of Plato and an associate of the Academy, 
interpreted geometric constructions entirely literally, namely as “a process by 
which objects were produced or generated” (Detlefsen, 2005, p. 244). 
Simultaneously, Menaechmus rejected the view that the matter of mathematics 
is the contemplation of eternal forms (see Bowen, 1983).

As we have seen, the philosophical debate about the status of Euclidean 
geometry was already raised in Ancient Greece and later continued in subsequent 
epochs. Although we are unable to examine this in detail, a few of its modern 
episodes may be illustrative at this point. René Descartes was both the founder 
of modern philosophy and a creative mathematician. As a mathematician, 
Descartes (1637/2012) launched a new field: an algebraic geometry, which 
applied established seventeenth-century algebra to the treatment of geometric 
problems (see Lenoir, 1979). As an influential philosopher, he further grounded 
geometry as the standard for all rational discourse, claiming that geometric 
theorems reveal prototypical “eternal truths” (Descartes, 1976). Intuition, also 
called “natural light,” was the cornerstone that allowed our mind’s eye to perceive 
the “clearness and distinctness” of mathematical theorems (Morris, 1973). 
According to Descartes (1684/1998), intuition is not “the fluctuating testimony 
of the senses” nor “the deceptive judgment of an imagination which composes 
things badly” (p. 79). Instead, intuition is

the conceptual act of the pure and attentive mind, a conceptual act so easy 
and so distinct that no doubt whatsoever can remain about what we are 
understanding. Alternatively, it amounts to the same thing to say that by 
“intuition” I understand the indubitable conceptual act of the pure and 
attentive mind, which conceptual act springs from the light of reason 
alone. Because this act is simpler, it is more certain, than deduction, which, 
however, as we have noted above, a human being also cannot perform 
wrongly. Thus everyone can mentally intuit that he exists, that he is 
thinking, that a triangle is bounded by only three lines, that a sphere is 
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bounded by a single surface, and similar things, which are much more 
numerous than most might realize, since they disdain to turn their minds 
to such easy matters. (ibid., pp. 79–80)

Finally, it should be emphasized that although Descartes understood intuition as 
a purely intellectual capacity, or something belonging to the sphere of thinking, 
he conceptualized intuition according to a traditional metaphor, stating that 
“thinking is seeing.”

The issues of mathematical intuition and sources of geometric knowledge 
were especially crucial for Immanuel Kant. We should recall his views briefly 
here since they enjoyed a wide impact on interpreting Euclidean geometry, as a 
“privileged” (in relation to others) mathematical system. The Königsberg 
philosopher claimed that all mathematical theorems, including the first principles, 
have the status of so-called synthetic a priori propositions. “Synthetic,” according to 
Kant, means that a proposition’s predicate concept is not contained in its subject 
concept, and therefore a proposition expands our knowledge; “a priori” means 
that the truth of a proposition is independent of empirical justification and may 
be recognized intuitively.6 In the Prolegomena to Any Future Metaphysics, Kant 
(1783/2004) noted that mathematical reasoning:

carries with it thoroughly apodictic certainty (i.e., absolute necessity), 
hence rests on no grounds of experience, and so is a pure product of reason, 
but beyond this is thoroughly synthetic … All mathematical cognition has 
this distinguishing feature, that it must present its concept beforehand in 
intuition and indeed a priori, consequently in an intuition that is not empirical 
but pure, without which means it cannot take a single step; therefore its 
judgments are always intuitive. (p. 32)

In other words, mathematical propositions, such as “all rectangles have four sides 
as well as four right angles,” appear to be justified purely intuitively, but they are 
not tautological since they deliver information beyond that encoded in a subject 
concept.

Kant claimed that mathematical propositions are simultaneously synthetic and 
a priori, since they are associated with transcendental structures organizing 
cognition, namely representations of space and time (Brożek & Olszewski, 2011; 
Parsons, 1980). Notably, he understood space and time not as independent 
substances (things), or something external to the human being, but instead as 
internal components of the mind (or the transcendental ego, in Kantian terms): 
the forms that filter our sensual impressions. The internal representation of space 
allows us to construct geometry, while the representation of time underlies the 
construction of arithmetic. As Kant (1783/2004) said:

Now space and time are the intuitions upon which pure mathematics bases 
all its cognitions and judgments, which come forward as at once apodictic 
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and necessary; for mathematics must first exhibit all of its concepts in 
intuition—and pure mathematics in pure intuition—that is, it must first 
construct them … Geometry bases itself on the pure intuition of space. 
Even arithmetic forms its concepts of numbers through successive addition 
of units in time, but above all pure mechanics can form its concepts of 
motion only by means of the representation of time. (p. 35)

From its ancient beginnings, geometry was a science about space that we now 
call Euclidean. As mentioned in the previous section, this state only changed 
in the first half of the nineteenth century, when coherent geometric systems 
with the negation of the parallel postulate were developed. Kant perceived 
Euclidean geometry not only as a privileged field of mathematics but also stated 
that the space understood as the inner component of the human mind (resp. 
transcendental ego) is a starting point for the construction of geometry, which 
is necessarily Euclidean. In other words, he believed that the intuition leads us 
directly to Euclidean structures. Geometry does not come, however, from the 
passive contemplation of space. Kant emphasized the active role of the human 
mind in the construction of geometric entities. Brożek and Olszewski (2011) 
nicely summarized this aspect of Kant’s doctrine: “mathematical knowledge 
cannot be gained by recourse to concepts. The analysis of pure concepts cannot 
lead us to the establishment of any mathematical theorem—in order to prove 
anything, we need to construct our concepts, and for the construction we need 
intuition” (p. 89).

Let us try to evaluate Kant’s contribution to the philosophy of geometry. On 
the one hand, historians of mathematics often stress that Kant’s unquestionable 
authority inhibited the reception of non-Euclidean geometries for decades and 
contributed to the absolutization of the Euclidean system, namely perceiving it 
as the matter of truth. On the other hand, Kant’s concept of the link between 
geometric intuition and the internal representation of space has inspired 
generations of researchers who, nevertheless, mostly disagreed with his claim 
that intuition can only lead to geometric constructions constrained by the set of 
Euclidean postulates. In the final paragraphs of this section I will take a look at 
two prominent figures—Henri Poincaré and Hermann von Helmholtz—who 
were strongly influenced by Kant but rejected his claim that Euclid’s postulates 
are indisputable.

Henri Poincaré, the French scientist of the turn of the nineteenth and 
twentieth centuries, is known for his tremendous impact on numerous disciplines, 
such as pure mathematics (e.g., he was one of the cofounders of topology and the 
author of the conformal disk, which is a model of hyperbolic geometry), 
mathematical physics (almost simultaneously to Einstein, he developed the 
mathematical foundations of special relativity theory), and philosophy, 
particularly the general methodology of science, as well as the philosophy of 
mathematics (see J. Gray, 2012). Mathematical intuition was one of his main 
interests (Murawski, 2004). Inspired by Kant, Poincaré (1905) perceived it as the 
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innate creative power of the human mind. This capacity fosters the construction 
of mathematical concepts and makes that mathematical theorems are perceived 
as clear and distinct. Furthermore, Poincaré considered generalization by 
induction, which allows the formulation of synthetic mathematical propositions—
namely those that expand our knowledge—a manifestation of aprioristic 
intuition. He also considered the relationship between conscious and unconscious 
levels of mathematical processing. According to Poincaré, a large number of 
mathematical theorems originate at the unconscious level, but must be completed 
by consciously controlled reasoning.

Although Poincaré referred explicitly to Kant, he developed an original 
position in the field of the philosophy of geometry. In contrast to Kant, Poincaré 
stated that postulates and common notions (or axioms, in modern terms), 
which serve as the starting point of geometric proofs, are not synthetic a priori 
judgments. This does not mean that Poincaré returned to the traditional claim 
that geometry describes spaces that extend outside and are independent of the 
human mind. Instead, he stated that although empirical facts can affect the 
choice of geometric axioms, ultimately they are accepted by virtue of the 
convention or methodological decision (such a view is called conventionalism). 
According to this line, we cannot say that Euclidean geometry, indeed any 
geometric system, is true. The criteria for choosing a given set of axioms are—
in addition to avoiding inconsistency—convenience, fruitfulness, and 
simplicity. We can describe the same physical phenomena by using different 
geometric systems. According to Poincaré (1905), there are, however, some 
reasons according to which, “Euclidean geometry is, and will remain, the most 
convenient” (p. 50):

1st, because it is the simplest, and it is not so only because of our mental 
habits or because of the kind of direct intuition that we have of Euclidean 
space; it is the simplest in itself, just as a polynomial of the first degree is 
simpler than a polynomial of the second degree; 2nd, because it sufficiently 
agrees with the properties of natural solids, those bodies which we can 
compare and measure by means of our senses. (ibid.)

To sum up, although mathematical intuition understood in Kantian terms played 
an essential role in Poincaré’s philosophy of mathematics, the French scientist 
claimed that the construction of Euclidean geometry, or at least its starting point, 
does not emerge from the structure of the transcendental ego, but is instead a 
matter of convention driven by simplicity and physical facts. Poincaré’s views on 
the foundations of geometry were no exception. Hermann von Helmholtz was 
another researcher who was strongly influenced by the Königsberg philosopher, 
but he eventually followed his own path.

Hermann von Helmholtz, who is considered one of the founding fathers of 
experimental psychology, was undoubtedly one of the most versatile scientists of 
the nineteenth century. He was a physician, physiologist, and mathematical 
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physicist, but his scientific approach was intertwined with his philosophical 
interests. His contribution to the understanding of the human mind and nervous 
system includes, among other things, studies on the perception of space, colors 
and sounds, the measurement of the speed of nerve impulses, pioneering ideas 
about unconscious processing, and a critique of nativism. Helmholtz was engaged 
in mathematical practice, and his interests focused on non-Euclidean geometry 
(Helmholtz, 1868/1977a). All those multifaceted interests affected his 
philosophical views on the foundations of geometry (see Biagioli, 2016; Hatfield, 
1990; Hyder, 2009).

Helmholtz claimed that Euclidean geometry is not a privileged geometric 
system. He believed that non-Euclidean geometries are not just “mathematical 
toys” or useless products of human imagination, but they may be adapted to 
describe physical reality. According to him, the traditional view that the 
geometry characterized by Euclid’s axioms describes the space that surrounds us 
is not an irrefutable fact, but rather a question that requires empirical investigation.7 
He also questioned the view—one held even by Poincaré—that Euclidean 
geometry comes to our minds in a privileged, due to its simplicity, way. In the 
paper entitled On the Origin and Significance of the Axioms of Geometry, Helmholtz 
(1870/1977b) pointed out that a non-Euclidean world could be imagined as 
effortlessly as a Euclidean one. By referring to an interpretation of Bolyai-
Lobachevsky geometry on a pseudospherical surface—proposed by Eugenio 
Beltrami—Helmholtz introduced a thought experiment with an imaginary 
world behind a convex mirror. Biagioli (2016) summarizes Helmholtz’s argument 
as follows:

for every measurement in our world, there would be a corresponding 
measurement in the mirror. The hypothetical inhabitant of such a world 
may not be aware of the contractions of the distances she measures, because 
these would appear to be contracted only when compared with the results 
of the corresponding measurements outside the mirror. Therefore, she may 
adopt Euclidean geometry. At the same time, the geometry of her world 
would appear to us to be non-Euclidean. (p. 59)

Finally, let us consider Helmholtz’s views on the crucial subject of this section, 
namely geometric intuition. Although he agreed with Kant that sensual 
impressions are filtered—or transformed—by the perceiver, he rejected the 
Kantian transcendental standpoint. According to Helmholtz (1870/1977b), “it is 
no transcendental form of intuition given before all experience” (p. 26). The 
same applies, according to him, to the ordinary representation of space: it is not 
permanently fixed—or encoded—in the structure of transcendental ego or any 
other hardwired factor, but it is formulated through experience, which involves 
vision and the sense of touch.8 Therefore, Helmholtz was an empiricist who 
claimed that the mental capacity traditionally called geometric intuition, “(…) is 
an empirical acquaintance, obtained by the accumulation and reinforcement in 
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our memory of impressions which recur in the same manner” (ibid., pp. 25–26).9 
Geometric intuition, as well as the internal representation of space, can be 
analyzed in simpler mental components acquired during individual development. 
Such an empirical view favored the experimental approach to the development 
of geometric capacities.

As we have already suggested, Helmholtz’s views on the foundations of 
geometry were influenced by his broader scientific interests. Although we can 
consider his ideas a prefiguration of the experimental research on the acquisition 
of geometric competences, we should bear in mind that Helmholtz undertook 
the problem of the foundations of geometry mainly from the position of a 
philosopher—thus I have introduced his standpoint in the current section. Before 
we turn to describing the pioneering psychological research on the development 
of geometric cognition, let us note that even though the transcendental account 
of intuition (to a large extent thanks to Helmholtz) found its ultimate place in the 
history of ideas, Kant’s approach has been revived both in philosophical and 
psychological theories emphasizing innate, or hardwired, components of the 
human mathematical knowledge.

1.4 � The development of geometric skills as a 
psychological problem

Experimental psychology emerged from, or rather began to emancipate itself 
from, philosophy in the mid-nineteenth century. Hermann von Helmholtz, who 
interestingly did not describe himself as a psychologist, contributed to the 
independence of the discipline. The perception of spatial forms, at least in terms 
of geometric-optical illusions, has been studied since the dawn of experimental 
psychology (Oppel, 1855; Wundt, 1898). Then, in the first half of the twentieth 
century, the various flourishing schools of psychology, which were gaining their 
own methodological maturity at that time, explored geometry-related 
phenomena. Gestaltists, for instance, aimed to discover the innate principles of 
perception, thanks to which man is able to perceive spatial patterns and forms as 
integrated wholes or gestalts (Koffka, 1936), while behaviorists studied how 
animals learn to navigate in spatial layouts characterized by geometric properties 
(Tolman, 1932). None of these schools, however, aimed to develop the theory of 
geometric cognition. The problem was undertaken by Jean Piaget, a Swiss 
researcher with broad interests, whose innovative experimental methods and 
pioneering theories on cognitive development extended the scope of child 
psychology, which had previously focused mainly on sensorimotor development 
(Piaget, 1926).

In the most general terms, Piaget claimed that to fully attain the cognitive 
skills observed in adults, the child must pass through several developmental 
stages, during which subsequent structures of knowledge are constructed—
starting in infancy—one after another, and in a fixed order (Flavell, 1963). 
Although Piaget focused on numerous aspects of cognitive development, from 
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the shaping of naïve physics to social beliefs, his research on the acquisition of 
knowledge about space was “fairly central to his general theory of intelligence,” 
and thus—as Ninio (1979) continues—it was “developed in great detail” (p. 
126). The results of this research were enshrined in two of Piaget’s books, 
namely The Child’s Conception of Space, coauthored with Bärbel Inhelder 
(1948/1967), and The Child’s Conception of Geometry, written together with the 
latter and Alina Szemińska (1948/1960). The former work, which is of a more 
introductory nature, focuses mainly on the developmental shifts leading the 
child to the construction of the concept of Euclidean space, while the later 
book describes the emergence of specific geometric capacities, such as 
measuring. In this section, I will introduce and evaluate the content of Piaget 
and Inhelder’s work.

Piaget and Inhelder (1967) claim that the child’s mental representation of 
Euclidean space is not innate (or hardwired), nor is it formed instantly in a mature 
form. Instead, it emerges, similarly to other cognitive achievements, through the 
construction process that takes place in a fixed order and overlaps with the 
general stages of cognitive development, starting in the early period.10 The 
construction process is driven not by the passive observation of surroundings but 
instead by motoric actions, namely exploration of environment and manipulation 
of objects. These actions play crucial roles, providing the child with opportunities 
to establish geometric concepts. Such concepts are, however, not abstracted from 
perceived physical objects, but emerge as the outcome of an internalization of 
actions. The child—as Piaget and Inhelder (1967) claim—“can only ‘abstract’ the 
idea of such a relation as equality on the basis of an action of equalization, the 
idea of a straight line from the action of following by hand or eye without 
changing direction, and the idea of an angle from two intersecting movements” 
(p. 43). Thus, the authors explicitly state that geometric cognition originates in 
“experimentation,” wherein

the experiments the child performs in modifying objects by his actions are 
not purely and simply physical experiment dealing exclusively with the 
intrinsic properties of objects as such (…). The first experiments which 
give rise to the idea of space are in fact experiments on the subject’s own 
actions, and they consist of finding out how these actions acceded one 
another. For example, after placing B between A and C, the child discovers 
that he is bound to encounter it once more between C and A. Having 
passed the end of a string through a loop, preparatory to making a knot, the 
child discovers that by pulling it further he does not change the essential 
character of the knot, and so on. (p. 453)

Let us introduce the order in which, according to Piaget and Inhelder (1967), 
children develop their geometric skills. Prior to establishing the fact that 
objects—characterized by the permanence of shape and size—“populate” 
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Euclidean space, the child constructs so-called topological space. According to 
Piaget and Inhelder, it is characterized by the following topological properties:

•	 Proximity (namely, the “‘nearbyness’ of elements belonging to the same 
perceptual field”; ibid., p. 6);

•	 Separation (i.e., two elements are separated when they have no points in 
common; p. 462);

•	 Order or spatial succession (namely, perceiving that “two neighboring though 
separate elements are ranged one before another”; ibid., p. 7);

•	 Enclosure or surrounding (in two-dimensional space, it refers to the situation 
when “one element may be perceived as surrounded by others,” while in a 
three-dimensional layout, it “takes the form of the relation of ‘insaneness,’ as 
in the case of an object in a closed box”; ibid., p. 8);

•	 Continuity (the property that characterizes lines and surfaces; it develops as 
“the synthesis of” properties listed above; ibid., p. 144).11

Although children can discriminate between open and closed visual forms at 
the earliest developmental stage, they do not have Euclidean concepts—such as 
angle and length—yet. Thus, according to Piaget and Inhelder, for the child, the 
earliest form of space is perceptual rather than conceptual. The crucial point is 
that the topological properties listed above are grasped by children first since they 
are abstracted from developmentally earliest actions, such as “the dissociated 
elements of primitive motor rhythms in scribbling” (Clements & Battista, 1992, 
p. 423).

Piaget and Inhelder’s (1967) view that sensitivity to the topological properties 
listed above precedes the development of the mental representation of Euclidean 
space is called the topological primacy thesis. The authors grounded their thesis 
in the results of two kinds of behavioral experiments: haptic and drawing studies 
(see Ninio, 1979). In the former, the children’s task was to explore hidden objects 
tactilely and match them with replicas. According to Clements and Battista’s 
(1992) summary, “preschool children were reported initially to discriminate 
objects on the basis of topological features, such as being closed or otherwise 
topologically equivalent. Only later could they discriminate rectilinear from 
curvilinear forms and, finally, among rectilinear closed shapes, such as squares 
and diamonds” (p. 422; see Figure 1.4).

Regarding the latter type of studies, Piaget and Inhelder assumed that since the 
child’s capacity for drawing a copy of a given figure reaches beyond perceptual 
and motoric capabilities, requiring representational skills, failed, or inexact, copies 
reflect a deficiency in terms of her mental representation of space. For the first few 
years of life, the child scrawls but, when she reaches the age of 3, her drawings 
begin to reflect the topological properties of target objects. The child is, however, 
unable to understand the difference between curved and straight-sided shapes. 
For instance, when copying a circle, a drawn line is closed but geometrically 
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irregular. Thus, a circle is indistinguishable for a 3-year-old child from a triangle 
or rectangle. Approximately at the age of 4, the child distinguishes Euclidean 
forms substantially better, becoming able to copy the square and rectangle 
successfully; however, sensitivity for angular properties only refines in the next 
few years. At the age of 6–7, children reach the sensitivity of all the Euclidean 
properties, as manifested by the fact that they can replicate the rhombus.

Achieving sensitivity for Euclidean forms and their properties does not mean, 
however, that children are already equipped with the concept of Euclidean space. 
Before such a representation becomes fully developed, the child constructs 
so-called projective space. According to Piaget and Inhelder’s (1967) terminology, 
topological properties differ from projective ones in the fact that the former 
concern a particular object, while the latter concern the object and their relative 
position to the observer (note that “absolute” distance is not a projective property). 
As Clements and Battista (1992) note, “projective relations begin psychologically, 
at the point when the figure is no longer viewed in isolation but begins to be 

FIGURE 1.4  Piagetian distinction on Euclidean and topological figures. The figure is 
patterned after Clemens and Battista (1992, p. 424) and represents stimuli used in 
behavioral studies by Piaget and Inhelder (1967). According to their topological 
primacy thesis, children show sensitivity for the figures presented in the right column 
earlier (in terms of developmental stages). The child begins to understand the figures 
presented in the left column only in further developmental stages when she becomes 
sensitive to Euclidean properties. Figures in the left column are called by Piaget and 
Inhelder “Euclidean,” while figures in the right are termed “topological.”
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considered in relation to a point of view. For example, the concept of the straight 
line results from the child’s act of taking aim, or sighting. Children perceive a 
straight line since the earliest years, of course, but they cannot place objects along 
a straight path not parallel to the edges of a table. Instead, they tend to follow the 
edges of the table or curve the line toward such a path” (p. 423). This limitation 
is overcome not earlier than at the age of 7. To sum up, projective space involving 
the topological one is enriched with a viewpoint. The construction of projective 
space takes place through linking—or coordinating—possible viewpoints with 
the planes where the objects are placed.

When the mental construction of projective space is done, children increase 
their experience of relationships between figures and objects themselves, and 
begin to grasp the notion that these relationships are organized within a broader 
frame of reference. Over the following few years, they construct geometric 
concepts such as a straight line, parallels, and angles and acquire an understanding 
of metric properties (distance), as well as increasingly recognize the similarity 
between figures, something that goes hand in hand with increasing 
transformational abilities. This process leads them, approximately at the age of 
12, to developing the concept of Euclidean space. Such a concept, in its final form, 
is highly abstract, because it refers not only to the concrete frame of reference 
composed of elements occupying currently perceived positions, but rather to the 
organization of space itself as an invisible “scene” for objects. As Piaget and 
Inhelder (1967) said:

It applies equally to positions within the network as to objects occupying 
any of these positions and enables the relations between them to be 
maintained invariant, independent of potential displacement of the 
objects. Thus the frame of reference constitutes a Euclidean space after the 
fashion of a container, relatively independent of the mobile objects contained 
within it, just as projective co-ordination of the totality of potential 
viewpoints includes each viewpoint actually envisaged (p. 376).

To sum up, Piagetian theory states that the abstract idea of space “populated” by 
objects and characterized by Euclidean properties is not innate, but is rather a 
result—or a culminating point—of a long-term developmental process. The 
process is driven by the progressive coordination of actions taken by the child, 
and its outcomes do not operate on the principle of all or nothing. Prior to 
establishing Euclidean space, the child constructs more primitive spaces, namely 
the perceptual—which is characterized in topological terms—and the projective, 
which is enriched with possible points of view. During individual development, 
a new, increasingly sophisticated network of spatial concepts is constructed. 
These concepts are understood by Piaget and Inhelder (1967) as “(…) internalized 
actions and not merely mental images of external things or events—or even 
images of the results of actions” (p. 454). Before we turn to a critical discussion 
of Piagetian theory, let us consider what geometric intuition—a traditional 
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theme of philosophical investigations—looks like from this perspective. In the 
general conclusions of The Child’s Conception of Space, Piaget and Inhelder (1967) 
refer to this capacity explicitly:

The “intuition” of space is not a “reading” or apprehension of the properties 
of objects, but from the very beginning, an action performed on them. It 
is precisely because it enriches and develops physical reality instead of 
merely extracting from it a set of ready-made structures, that action is 
eventually able to transcend physical limitations and create operational 
schemata which can be formalized and made to function in a purely 
abstract, deductive fashion. From the rudimentary sensorimotor activity 
right up to abstract operations, the development of geometrical intuition is 
that of an activity, in the fullest sense … . (p. 449)

Although the Piagetian theory of spatial development enjoys a certain degree of 
popularity and remains influential in some academic circles, it has been criticized 
in various aspects. Most of the doubts raised concern the topological primacy 
thesis (Darke, 1982), but Piaget and Inhelder’s views on the development of 
projective space (Newcombe, 1989) as well as Euclidean space (Liben, 1978) have 
also been the subject of criticism (a review of “classic” studies can be found in 
Clements & Battista, 1992). The simplest objection that comes to mind is the 
inadequate methodology of drawing studies: the fact that the child cannot draw 
a copy of a figure correctly does not necessarily mean that she lacks the relevant 
Euclidean concepts, but may be explained by motor difficulties (Clements & 
Battista, 1992, p. 423; see also Sinclair, Moss, Hawes, & Stephenson, 2018). 
Piaget was aware of this objection; therefore, he did not use drawing studies as 
the only measurement of spatial development (Martin, 1976b). Other objections 
concern the mathematical adequacy of terms employed by Piaget and Inhelder 
(1967) and are related to the division of figures into “topological” and “Euclidean” 
(Clements and Battista, 1992, p. 424ff). Given that experimental design—as well 
as each observation—is theory-laden, such objections permit us to doubt the 
reliability of the Piagetian assertion that Euclidean properties develop from 
topological ones.

Let us start with clarifying what the topology is. In the simplest terms, it is a 
branch of mathematics (precisely, geometry) that investigates the properties of 
space conserved under the class of continuous deformations. This class includes 
operations such as stretching, twisting, crushing, and bending, but excludes 
gluing and tearing. Proximity is the first of the relationships described by Piaget 
and Inhelder (1967) as topological. Recall that the authors define it as “‘nearbyness’ 
of elements belonging to the same perceptual field” (p. 6). According to Kapadia 
(1974), “this is certainly not a topological relationship. For it involves a vague 
idea of distance, a concept foreign to general topology: there is no difference, 
topologically, between a man wearing a pair of shoes and the same man who has 
merely taken off his shoes” (p. 420). Also, enclosure cannot be perceived—even 
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though Piaget and Inhelder do this—as a topological property. At this point it 
should also be noted that other notions used in The Child’s Conception of Space do 
not correspond to standard mathematical usage (i.e., separation), or they are not 
well defined (i.e., continuity) (Martin, 1976b).

These issues are related to the mutually exclusive division of figures into 
“topological” and “Euclidean” employed by Piaget and Inhelder in their 
experimental designs. As Martin pointed out, they, however, did not specify the 
criterion of this division. Anyhow, as the author noted, such a classification 
cannot be maintained since each figure has both topological and Euclidean 
properties to the same degree: “for any one figure has as many topological 
properties as any other figure, and the same is true for Euclidean properties” 
(Martin, 1976b, p. 10). According to this interpretation, some figures used as 
experimental stimuli were in fact topologically equivalent and thus Piaget and 
Inhelder’s reasoning that child performance depends on topological properties is 
unsound. After discussing some of the conceptual doubts and their impact on 
experimental designs, let us look at the results of the direct replications of 
Piagetian experiments and other findings that contribute to the evaluation of the 
topological primacy thesis.

The attempt to directly replicate Piaget and Inhelder’s original findings turned 
out to be a severe challenge due to the short, or even skimpy, descriptions of the 
testing conditions and the suspicion that these conditions varied among all the 
tested children (Page, 1959). However, this does not change the fact that replication 
studies, whether they are of drawing or haptic experiments, were already carried 
out a few years after the release of the first English-language version of The Child’s 
Conception of Space (Lovell, 1959; Page, 1959; Peel, 1959). These studies generally 
replicated the original findings, and simultaneously corroborated the topological 
primacy thesis, while at the same time revealing some anomalies. On the one 
hand, “the children between 2–5 and 4–0 years were nearly three times as 
successful with the topological forms as with the simple geometrical shapes” 
(Page, 1959, p. 119). On the other hand, Page’s (1959) study challenged Piaget and 
Inhelder’s remarks on the poor distinguishing of curvilinear and rectilinear forms 
by 4-year-old children: “the children tested in the present experiment had much 
more competence in this matter than these remarks might lead one to expect” 
(p. 117). Regardless of this, we can suppose that the results may be task dependent: 
due to doubts about the theoretical basis of Piaget’s experimental designs, and 
insufficient descriptions of the target experiments, the reliability of Page’s study 
(as well as other direct replications of the original findings) is under question.

Subsequent research, reaching beyond direct replication, revealed further 
effects incoherent with Piaget and Inhelder’s claims. For instance, Martin 
(1976a) tested whether a child’s representation of space requires the preservation 
of the topological properties of forms when those forms are transformed in 
various ways. To this end, he used six target-shapes and their transformations of 
three kinds. Transformed items of the first kind were topological counterparts 
of the target, whereas transformed items of other types aimed at eliminating a 
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specific topological relationship, namely connectedness (the second kind) or 
closedness (the third kind), while simultaneously maintaining Euclidean 
characteristics (namely, straightness, curvature, length of a line segment, or 
angle) as much as possible.12 Martin tested 90 children, with 30 each from ages 
4, 6, and 8. In each trial, the child was first confronted with the target-shape, 
and then with three transformed items. Finally, the child was asked to indicate 
two items: the one “most like” the target-shape, as well as the “worst” 
modification. The study revealed that although children at the age of 4 tended 
to indicate topologically equivalent transformations as “the worst” counterparts 
of the target-shapes less frequently than 6- and 8-year-olds, “the worst” scores 
turned out to be at or above chance. Furthermore, the youngest children selected 
transformations that did not preserve topological properties as “most like” the 
target-shape with similar frequency as older participants. The results, as 
suggested by Martin (1976a), “do not support the theory that topological 
concepts develop prior to Euclidean and projective concepts in the child’s 
representational space” (p. 37).

Let us summarize the objections toward Piaget and Inhelder’s theory regarding 
the development of spatial cognition and add some new elements. Both 
methodological considerations and the results of experiments, for example, by 
Martin (1976a), suggest that the theory fails in regards to the order of emerging 
spatial concepts. Notably, the crucial claim, namely that grasping topological 
properties precedes the acquisition of projective and Euclidean concepts, turns 
out to be difficult to maintain. As I have mentioned earlier, Piaget and Inhelder’s 
results seem to be task dependent, or as Clements and Battista (1992) noted, they 
may be just artifacts emerging from selected visual stimuli and the children’s 
sensitivity to them. Such a capacity, as these authors claim, may not be a matter 
of grasping topological properties by the youngest children first, but rather a 
derivative of familiarity with some figures or their perceptually salient properties. 
As Clements and Battista (1992) continue, “It may be that children do not 
construct first topological and later projective and Euclidean ideas. Rather, it 
may be that ideas of all types develop over time, becoming increasingly integrated 
and synthesized” (pp. 425–426).

Despite all of this, we should admit that Piaget and Inhelder’s studies on child 
development of geometric concepts were precursory. Their value—as the first 
genuinely experimental approach to the problem—is unquestionable. The 
contribution of these researchers to understanding geometric cognition is also 
pioneering in another manner. In a similar manner to Helmholtz, Piaget and 
Inhelder rejected the innateness of geometric competences, but simultaneously 
shifted the received view that Euclidean concepts emerge from the perception of 
the surrounding world. Instead, they emphasized the role of the exploration of 
the environment, the manipulation of objects, and the internalization of these 
activities in the construction of geometric intuitions. As we will see in Chapter 
2, the contemporary understanding of the cognitive foundations of geometry 
dismisses the constructivism of Piaget and Inhelder, showing that some Euclidean 



Geometric thinking, the paradise of abstraction  25

concepts are “hardwired” in the child’s mind, while agreeing with the Swiss 
researchers that reciprocal relationships between perceptual and motoric activity 
and the internalization of one’s own actions are crucial for refining geometric 
skills. Before we do this—and which will be preceded by looking at the 
emergence of the cognitive science of mathematics—let us introduce an 
educational perspective on the development of geometric skills.

1.5  Euclid in the classroom

One of the milestones of Piaget’s work was making cognitive development the 
subject of experimental research. To a large extent, developmental psychology 
reached beyond the simple description of changes in a child’s behavior over time 
thanks to his contribution. The Piagetian approach went hand in hand with other 
disciplines for which “development” is a crucial term. It inspired especially 
educational studies, which have applied both constructivism and the idea of 
developmental stages (Egan, 1983). The problem of learning mathematics is not 
an exception: several approaches state that mathematical knowledge is acquired by 
means of a construction process, characterized by distinct stages achieved by the 
student in a fixed order (Kamii & Ewing, 1996; Lerman, 1989). Regarding the 
field of geometry, a wife-and-husband duo of Dutch scholars, Dina van Hiele-
Geldof and Pierre van Hiele (1957/1984), elaborated in their doctoral dissertations 
a prominent theoretical model (see also van Hiele, 1986), which influenced both 
educational psychology research and mathematical curricula of several countries, 
including the United States (see Battista, 2007; Clements & Battista, 1992; Usiskin, 
1982; Wirszup, 1976). The model consists of three main component-parts: a 
description of theoretical assumptions, levels of geometric thinking, and, finally, 
phases of instruction. In the current section, I will first introduce the model, and 
then discuss it in relation to the results of educational psychology studies.

The starting point of the van Hieles’ model is a set of theoretical assumptions 
that naturally bring to mind Piaget’s ideas. But, as we will see later, thinking of 
the van Hieles’ model as embedding geometric education in the received 
framework would be wrong. First of all, van Hieles propose that learning 
geometry is a sequential and hierarchical process (see Battista, 2007; Clements & 
Battista, 1992; Hershkowitz, 2009; Roth, 2011). It is sequential since achieving 
the mastery of academic geometry involves passing through the several levels, 
each characterized by different modes of thinking. The process is also hierarchical 
since mastering each of the higher levels requires proficiency at a lower one; in 
other words, the student cannot skip a lower level and reach a higher one. 
Another assumption made by van Hieles—linked, however, with the previous 
one—is that the explicit understanding of geometric concepts at some level is 
preceded by the implicit grasping of their content at the previous one. Finally, 
the researchers assume that geometric concepts on each level are structured by 
linguistic symbols that are unique at the appropriate level. According to these, 
for instance, the correct understanding of the relationship between a square and 
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a rectangle at some level may be incorrect at another one, which can be reflected 
in communication problems between the teacher and the student. However, it is 
not that the language merely reflects the development of geometric concepts. 
Instead, as Clements and Battista (1992) note, “language structure is a critical 
factor in the movement through the levels” (p. 427; see Chapter XIII of Dina van 
Hiele-Geldof ’s doctoral dissertation accessible in van Hiele & van Hiele-Geldof, 
1984). Now let us introduce the levels of the development of geometric thinking.13

The first level is called the “visual.” At the beginning of education, the 
student grasps geometric figures as gestalts relying only on the purely visual 
aspects, and she does not consider their component parts, geometric properties, 
or the fact that they belong to the more general geometric category. The 
recognition of the figure has a holistic character and leads the student to create 
her own mental image. At this level, the student learns to use verbal labels of 
particular figures, wherein if she calls the observed figure a rectangle, she means 
in fact, that the figure’s overall shape “fits” the shape called (by the instructor) 
“rectangle.” The performance in tasks with distinguishing figures or recognizing 
their congruency depends solely on holistic visual properties (“these figures 
appear to be the same”) and does not involve the consideration of individual 
properties (“these figures are the same because they have four angles”). At this 
level, geometric forms are categorized only through their similarity with 
familiar visual prototypes: for example, the student who is asked, “Why is this 
a rectangle?” and answers something like, “Because it reminds me of a door,” 
cannot justify her statement by referring to geometric relationships. Only after 
the transition to the second level does the student begin to understand that 
visual objects can be classified into more general categories and that these 
objects may be characterized by specific properties.

At the second level—known as “descriptive” or “analytic”—the student is 
able not only to identify figures by their overall visual shape, but also to 
characterize figures due to the properties associated with them. At this level, the 
student grasps that a rectangle is a parallelogram containing a right angle, and 
therefore applies the verbal label “rectangle” to objects characterized by properties 
that she has learned to specify as “rectangles.” Even though adepts of geometry 
at the descriptive/analytic level still perceive figures holistically, now they are no 
longer just visual gestalts, but bundles of relationships. These relationships are 
grasped not only through passive observation but also by actions such as drawing 
or measuring. As Clements and Battista (1992) note, at the second level “students 
discover that some combinations of properties signal a class of figures and some 
do not; thus, the seeds of geometric implication are planted” (p. 427). 
Nevertheless, geometric thinking at this level is still limited, since the student 
does not yet correctly understand how the properties of particular geometric 
forms are related to each other. This limitation is overcome with the transition 
to the following level.

The third level is called the “abstract” or “relational.” Once the student 
reaches this level, she not only knows the properties of a given figure but also 
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understands hierarchical relationships between geometric forms and their 
properties. This capacity allows her to categorize figures and informally 
substantiate these categorizations (a figure resembles another one; however, it is 
not identical with it since it has some additional characteristics). Furthermore, at 
this level, students reach beyond identifying figures based on visual shape and 
some properties, becoming capable of understanding geometric concepts in 
terms of necessary and sufficient conditions. This shift enables them to understand 
and demonstrate logically sound geometric reasoning. Plato’s demonstration 
introduced in Section 1.3 seems to be a good example of the reasoning accessible 
on the third of the van Hieles’ levels. To demonstrate that a square built on the 
diagonal of a given square is double, the student should be aware of some 
geometric relationships, for instance, the fact that each square can be divided into 
two triangles, wherein a diagonal of a square constitutes a hypotenuse (the side 
opposite the right angle) of these triangles. Nota bene, as we remember, the 
demonstration enshrined in the Meno is carried out by the geometrically naïve 
slave boy, which is—according to Plato—an argument in favor of the innateness 
of geometric intuition. In contrast to the philosopher, the van Hieles’ model 
states that the capacity to conduct informal reasonings appears at a relatively late 
stage of geometric education. Despite the fact that students at the third level 
understand that a definition is a tool of the logical organization of geometric 
relationships (therefore this level is called “relational”), and geometric forms 
about which they conduct informal reasonings are not just concrete visual forms 
but bundles of unchanging properties (thus the level is also called “abstract”), 
they still do not know that formal deduction serves as the tool for proving 
geometric theorems.

At “the level of formal deduction,” which is the fourth according to the 
numbering adopted here, “thinking is concerned with the meaning of 
deduction, with the converse of a theorem, with axioms, with necessary and 
sufficient conditions” (van Hiele & van Hiele-Geldof, 1984, p. 246). The 
student is familiar with the axiomatic-deductive method and can use it in 
practice to demonstrate some geometric truths via the construction of formal 
proofs. Having achieved this level, she understands notions like “definition,” 
“axiom,” “theory,” and “proof,” and efficiently distinguishes between defined 
and undefined terms. The subject of reasoning carried out by students at the 
fourth level involves the relations of the properties of categories of geometric 
forms. Adepts of geometry also achieve mastery in understanding so-called 
second-order relationships (namely involving relationships of relationships) 
considered within a formal system. Although geometric knowledge at this 
stage is already highly professionalized, there is still a final level that can be 
achieved.

After the transition to the fifth level, called “meta-mathematical,” the 
geometer’s (because at this level it would be strange to talk about a student, at least 
in the ordinary sense) capacities reach beyond formal reasoning about geometric 
relationships within the Euclidean system, and begin to concern multiple, that is, 
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non-Euclidean, systems. Geometers, as Clements and Battista (1992) note, “can 
study geometry in the absence of reference models, and they can reason by 
formally manipulating geometric statements such as axioms, definitions, and 
theorems. The objects of this reasoning are relationships between formal 
constructs. The product of their reasoning is the establishment, elaboration, and 
comparison of axiomatic systems of geometry” (p. 428). According to the van 
Hieles’ model, the transition to the meta-mathematical level means achieving the 
highest proficiency in geometric thinking by the adept.

Since we already know the characteristics of the levels, let us briefly introduce 
phases of instruction that allow the student to become skilled at every level of 
geometric thinking. First of all, the term “instruction” should be understood 
literally, because passing through the levels listed above is not a matter of 
chronological age. Instead, progress in geometric thinking, at least on the first 
three levels, strictly depends on the learning process that is facilitated by the 
teacher and the school curriculum. In the first, the so-called “information,” 
phase, students become familiar with the scope of the field through discussions 
with the teacher. “Guided orientation” is the second phase. At this stage, the 
student is involved in the active exploration and manipulation of objects and the 
teacher guides her to become implicitly familiar with selected geometric concepts 
and methods. During the third, “explicitation,” phase, students begin to 
understand geometric concepts explicitly, which manifests itself in their 
appropriate linguistic descriptions of the topic. When students already practice 
forming such reports in their own words, the teacher familiarizes them bit by bit 
with relevant portions of professional geometric language. Thus, with the help 
of instruction, students’ descriptions of geometric matter become less arbitrary. 
The fourth phase is called “free orientation,” since the student can apply the 
acquired conceptual knowledge and portions of professional terminology to 
solve problems independently. The role of the teacher in this phase is primarily 
correcting students’ mistakes and introducing alternative ways of solving the 
problem. Finally, in the fifth phase (“integration”), the student integrates the 
acquired knowledge and skills into a coherent framework, which may be 
relatively easily reported in the professional language of geometry. The teacher 
fills the gaps (if any) in her knowledge and indicates mutual relationships between 
the elements of the subject matter. If this task is completed, the student is ready 
to transition to the next level of geometric thinking.

As I have already mentioned, the van Hieles’ model has been widely recog-
nized by educators and has become the theoretical basis of curricula in many 
countries. On the other hand, further studies raised doubts regarding the 
adequacy of the initial assumptions, number of theoretical levels, and relation-
ship between geometric development and general cognitive development, 
as  well as the educational attainment of students in reference to levels (see 
Roth, 2011). Before we present the controversies, let us note that the results of 
numerous studies turned out to be, at least partially, consistent with the model, 
and validated its potential usefulness in describing geometric development 
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(see Clements & Battista, 1992 and Battista, 2007, p. 428). For instance, Burger 
and Shaughnessy (1986) conducted a study with the participation of students 
from the first grade up until college and asked them to perform tasks derived 
from the characteristics of the van Hieles’ levels. The tasks mainly involved 
drawing, identifying, and categorizing shapes, and informal as well as formal 
problem-solving in the domain of geometry.

Burger and Shaughnessy (1986) found that the youngest participants revealed 
a tendency to identify forms by means of their visual prototypes (“a rectangle 
reminds me of a door”) and to characterize them in reference to geometrically 
irrelevant properties. These students were included in Level 1 of geometric 
thinking. In turn, more advanced participants who operated on shapes based on 
their properties (“a rectangle has two sides equal and parallel to each other”) 
were counted as attaining Level 2. Students who demonstrated the correct 
understanding of relationships between different shapes (“both a rhombus and a 
rectangle are parallelograms, just as a square”) were included in Level 3 of 
geometric thinking. Finally, only one student who showed the capacity to 
conduct formal proofs was regarded as reaching Level 4. The study does not 
provide information about Level 5, which is not surprising since highly advanced 
meta-mathematical considerations reach beyond school, or even college, material 
and only seem to be available at the stage of doctoral studies in logic or 
mathematics.

Burger and Shaughnessy also found that the participants assigned to 
particular levels used specific linguistic expressions that substantiated one of 
the crucial assumptions of the model. On the other hand, another critical one, 
namely the discreteness of levels, previously found as accurate (see Wirszup, 
1976), was not confirmed by the results. As Burger and Shaughnessy (1986) 
note “the levels appear to be dynamic rather than static and of a more continuous 
nature than their discrete descriptions would lead one to believe. Students may 
move back and forth between levels quite a few times while they are in 
transition from one level to the next” (p. 45). Perceiving the levels as dynamic 
and continuous is supported by the finding that the student can be assigned 
simultaneously to different levels depending on the task: she solves, for instance, 
some problems in an abstract/relational way (Level 3), while others rather by 
employing a less advanced descriptive/analytic mode of geometric thinking 
(Level 2). Some other studies, for example, with the participation of 
undergraduate teachers, supported this line (Mayberry, 1983). Furthermore, 
Battista (2007) challenged the assumption that different kinds of reasoning 
characterizing levels develop sequentially. According to him, it is possible that 
“visual-holistic knowledge, descriptive verbal knowledge, and, to a lesser 
extent initially, abstract symbolic knowledge grows simultaneously, as do 
interconnections between levels” (p. 850). This, however, does not exclude the 
fact, as Battista continues, that despite the simultaneous development, “one 
level tends to become ascendant or privileged in a child’s orientation toward 
geometric problems” (ibid.).
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Another challenge concerns the base level. As we already know, assigning the 
student to a given level depends on fulfilling the level’s characteristics manifested 
in her behavior. But what if she does not meet all of the indicators of the first level? 
Fuys, Geddes, and Tischler (1988) suggested characterizing geometric thinking in 
such cases as “the weak visual level.” Clements and Battista (1992) went a step 
further, postulating “the existence of thinking more primitive than, and probably 
prerequisite to, van Hiele’s Level 1” (p. 429). The zero level, called “pre-
recognition,” involves only processing a part of a shape’s attributes by the child (we 
cannot talk about a student here, since the authors place this level at the earliest 
Piagetian stage of spatial development). At the level of pre-recognition, the child 
recognizes the difference between curvilinear (e.g., circle) and rectilinear forms 
(rectangle); she is not, however, capable of discriminating forms belonging to the 
same category.

At the end of this section, let us look at geometric education from a more 
practical perspective, namely in terms of student achievements. The results of a 
Programme for International Student Assessment (PISA) study by the 
Organisation for Economic Co-operation and Development (see OECD, 2014) 
revealed that students from several Western countries were less proficient in 
geometry (to be clear, the relevant subscale is called Space and Shape) in 
juxtaposition to other fields of mathematical education. The United States and 
United Kingdom were the countries where the divergence was the largest. 
According to Mammarella, Giofre, and Caviola (2017), a potential reason lies in 
the fact that only 8%–15% of the content of mathematical textbooks used in 
American primary schools—which reflects the scope of the curricula that they 
are intended to deliver—concerns geometry.

Furthermore, given that progress in geometric thinking depends on the 
instruction received, the authors see the second reason for students’ geometric 
difficulties in the fact that teachers in the United Kingdom and United States 
generally reach only the first and the second of the van Hieles’ levels (see Clements 
& Sarama, 2011). Last, but not least, Mammarella and colleagues (referring to 
their own research on the Italian population) suggest that if the assumption of the 
van Hieles’ model regarding sequentiality of geometric development is correct, 
one can suspect that difficulties at the earliest levels (visual and descriptive/
analytic) can meaningfully hinder progress in higher geometric thinking 
(abstract/relational, formal deduction). Therefore, the authors emphasize the 
need to facilitate the geometric thinking of both teachers and students through 
already designed and future psycho-educational interventions (see Mammarella 
et  al., 2017, pp. 237–240). Taking into account the fact that curricula and 
interventions should be evidence based (S. P. Miller & Hudson, 2007), and that 
the “cognitive revolution,” which started in the mid-1950s, is by no means over 
yet, mathematical educators should constantly follow the development of the 
cognitive science of mathematics. In the following section, we will look at the 
growth and development of this research field and discuss the place of geometric 
cognition within it.
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1.6  How cognitive science discovered and forgot Euclid

Cognition, understood as an activity of the human mind that involves forming 
internal representations including concepts, and processing them to guide 
actions, has been studied experimentally at least since the time of Piaget. The 
1920s–1950s works by the Swiss psychologist were not, however, widely known 
in the United States,14 where behaviorism—intentionally avoiding speculations 
on internal mental states—flourished as the dominant research perspective. The 
situation in the United States changed in the mid-1950s, when the so-called 
“cognitive revolution” began (see Bechtel, Abrahamsen, & G. Graham, 1998; 
Gardner, 1985; G. A. Miller, 2003). Although the name was created and accepted 
by the academic milieu a few years later, September 11, 1956, is assumed as the 
symbolic date of birth of cognitive science. On that day, a famous symposium, 
organized by the Special Interest Group in Information Theory, took place at the 
Massachusetts Institute of Technology. Among others, Newell and Simon talked 
about their computer program (programmed together with Shaw) that was 
capable of solving mathematical problems, Chomsky introduced the influential 
idea of transformational generative grammar, and G. A. Miller discussed the 
results of his research on the limits of short-term memory.

After many years, the latter of these researchers, G. A. Miller (2003), noted: 
“I  left the symposium with a conviction, more intuitive than rational, that 
experimental psychology, theoretical linguistics, and the computer simulation of 
cognitive processes were all pieces from a larger whole and that the future would 
see a progressive elaboration and coordination of their shared concerns” (p. 143).15 
In addition to experimental psychology, linguistics and computer science, 
neuroscience, philosophy, and also anthropology were constituents of cognitive 
science from the very beginning; however, the position of the former trio was 
perceived as central, while the latter were seen as more peripheral. This state 
changed in the 1980s, with the search for the unity and integrity of this multibranch 
discipline being done in earnest for the first time (Miłkowski, 2016; 2017; see 
however, Núñez et al., 2019). Cognitive science is, however, still an open 
enterprise that incorporates the results of related research fields if necessary. 
Regarding the latter, and as we shall see in Chapter 2, the results of ethology, 
comparative psychology, and evolutionary biology appear to be especially 
informative. At this point we should, however, note that the early cognitive 
science studies on mathematical thinking were “less interdisciplinary,” being 
based mainly on the methods of computational modeling and experimental 
psychology. Prior to the introduction of the first cognitive studies on geometry, 
let us also add that early cognitive science conceptualized mental processing 
mainly in terms of transformations of amodal and arbitrary symbols (Fodor, 1975; 
Jackendoff, 2002), performed by brain structures distinct from these engaged in 
sensorimotor processing (Bechtel et al., 1998).

Mathematics, especially mathematical logic, was an important research topic 
for this budding discipline. Some of the “founding fathers” of cognitive science 
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had directly recognized that the solving of logico-mathematical problems was 
the prototypical matter of human thinking. For instance, Newell and Simon’s 
(1956) aforementioned artificial intelligence program (nota bene, this term was also 
coined in 1956), known as The Logic Theorist, attempted to prove some 
theorems enshrined in Russell and Whitehead’s Principia Mathematica. 
Interestingly, a proof of one of the theorems (i.e., 2.85) done by the computer 
program was recognized as more elegant than the original. A few years later, 
Newell, Shaw, and Simon (1959) finished their work on a new AI program called 
General Problem Solver. Although the name is somewhat exaggerated, since the 
class of potentially solved problems was limited solely to sufficiently formalized 
ones, the General Problem Solver and similar programs performed well in various 
kinds of mathematical problems. Euclidean proofs are not the exception here, yet 
before introducing geometric theorem-proving programs it is worth casting an 
eye over the basic designing principles of early AI programs.

General research methodology and conceptualization of cognition are more 
important than technical details. First of all, Newell and Simon (1972; 1976), as 
well as some of the other “founding fathers” of cognitive science, made efforts to 
make the computational models psychologically reliable. To this end, they 
implemented the results of psychological research into programs, mainly verbal 
protocols, on problem-solving by flesh-and-blood human beings (Ericsson & 
Simon, 1984). It should be emphasized that although these data served as 
empirical support of the theoretical proposal embodied within the program, the 
computer simulations delivered predictions that could be empirically tested in 
further studies. Regarding the conceptualization of thinking (or cognition), 
Newell and Simon’s (1976) studies were deeply embedded in the already well-
known idea that cognitive processing is based on manipulating amodal and 
abstract symbols. In particular, these researchers proposed the so-called physical 
symbol system hypothesis, which states that “a physical symbol system has the 
necessary and sufficient means for general intelligent action” (p. 116). More 
specifically, Newell and Simon understood thinking of each physical symbol 
system, including both human and AI programs, as the heuristic search for a 
solution to a problem carried out as rule-based and sequential (i.e., step by step) 
symbol manipulations. Such an approach was also applied in early cognitive 
studies on geometry.

The first—to the best of my knowledge—computer program devoted to 
geometric theorem-proving was designed in the early 1960s by Gelernter (1963). 
While the program did not implement results on human problem-solving 
research, its abilities were nevertheless impressive for those times. The program, 
for instance, was capable of finding proofs for propositions such as “a point on the 
bisector of an angle is equidistant from the sides of the angle” and “in a 
quadrilateral with one pair of opposite sides equal and parallel, the other pair of 
sides are equal” (ibid., p. 143ff; see Figure 1.5).

Regarding the form of representation, Gelernter’s program operated by 
transforming symbols according to syntactic rules, but also directly by processing 
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diagrammatic representations of the relevant figures. Thus, an executive routine 
of Gelernter’s program (called a heuristic computer) involved two main component 
parts, namely, a syntax computer and a diagram computer (see  Figure  1.6). 
Gelernter supposed that such a computational organization reflects human 
geometric practices. As Simon (1978) comments, “before the system attempted to 
prove syntactically that corresponding angles, say, or corresponding sides of a pair 
of triangles were equal, it first tested for approximate equality on the diagram. 
The space of the diagram therefore served as a planning space that prescreened 
proof attempts and saved effort in fruitless proof attempts” (p. 15). The path 
delineated by Gelernter was followed successively by other researchers.

Nevins (1975) designed another theorem-proving artificial system that was 
able to solve a wide class of plane geometric problems. Although the processing 

FIGURE 1.5  Diagrams for the propositions proved by Gelernter’s program. The figure 
is patterned after Gelernter (1963, pp. 147–148) and depicts diagrams for the two 
propositions proven by his geometric theorem-proving program. The propositions 
are the following: “a point on the bisector of an angle is equidistant from the sides of 
the angle” (top) and “in a quadrilateral with one pair of opposite sides equal and 
parallel, the other pair of sides are equal” (bottom).

FIGURE 1.6  The structure of Gelernter’s program. The figure is based on Gelernter 
(1963, p. 139) and shows the main component parts and the information flow of his 
geometric theorem-proving program.
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of curve lines or the introduction of new points into diagrams was beyond its 
powers, the author included the capacity to process several geometric predicates 
into the program, such as straight line, parallel, right angle, equal segment, or 
equal angle, which allowed it to operate in an abstract problem space in an 
effective way. The Nevins program was an important step toward the powerful 
automation of geometric reasoning, however its explanatory value was limited 
since the operational rules were not based on human performance data. This 
limitation was overcome by Greeno (1978), who used students’ verbal reports to 
design a geometry theorem-proving program called Perdix. These reports 
revealed, for example, that geometric reasoning is largely based on the processing 
of diagrammatic information. Notably, in contrast to the models of Gelernter 
and Nevins, Perdix’s purpose was not to solve geometric problems in the most 
effective way, but rather by modeling the performance of students with moderate 
expertise in geometry. A similar motivation guided the Geometry Tutor Expert 
(GTE) by J. R. Anderson, Boyle, and Yost (1985). The GTE was designed to be 
highly psychologically reliable. To this end, the authors implemented a number 
of solutions adopted previously in a famous cognitive architecture called Adaptive 
Control of Thought* (ACT*) by J. R. Anderson (1983). In particular, the 
researchers incorporated ACT*’s heuristics of predicting inferences on the basis 
of acquired contextual features involving both the diagram’s properties and 
justified statements.

At the end of this brief review of classical AI geometric programs, let us 
introduce Koedinger and J. R. Anderson (1990) Diagram Configuration (DC) 
model. The model was well grounded in verbal protocols, and its purpose was to 
capture the kind of geometric reasoning made by experts. The latter turned out 
to solve geometric problems by sketching out possible solutions and planning the 
following inferences by taking into account information contained in the 
diagram. This result is consistent with both previous computer simulations 
(Greeno, 1978), as well as grounded in notable theoretical claims by Larkin and 
Simon (1987). In the meaningfully entitled article, Why a Diagram Is (Sometimes) 
Worth Ten Thousand Words, Larkin and Simon noticed that a diagram 
predominantly represents related information in a more compact way than a set 
of statements (where the information may be fragmented), and thus facilitates 
the process of understanding. Furthermore, according to Larkin and Simon, a 
diagram supports perceptual inferences that can be equally robust, but easier to 
perform. In contrast to previous computer programs, which initially planned 
successive inferences in a step-by-step way, but in line of verbal protocols 
obtained from human experts, DC was capable of step-skipping and purposive 
planning inferences through “parsing geometry problem diagrams into 
perceptual chunks, called diagram configurations, which cue relevant 
knowledge” (Koedinger & J. R. Anderson, 1990, p. 511).

As we have seen, geometry was the research topic of the “computational 
branch” of cognitive science from the outset. Although research on geometric 
theorem-proving computer programs was not completely isolated from the other 



Geometric thinking, the paradise of abstraction  35

empirical disciplines constituting cognitive science,16 we can venture to say that 
in the first decades psychology, neuroscience, linguistics, and anthropology did 
not contribute to exploring geometric cognition from their own perspective. 
The situation was different if we consider the beginnings of psychological 
research on numerical cognition. Already in the 1960s, Moyer and Landauer 
(1967) published the results of a behavioral study which measured reaction time 
(RT), and which strongly contributed to the further exploring of number 
processing. They discovered the so-called numerical distance effect: when 
participants are asked to select the numerically larger value of two presented 
digits, RT increases when the numerical distance between them decreases. 
Moyer and Landauer also observed the so-called numerical size effect: for the 
same numerical distance, RT is shorter when participants compare small numbers 
than larger. These effects have been intensively studied in further behavioral 
experiments (see e.g., Dehaene, 1989; Tzelgov, Meyer, & Henik, 1992), and 
then, when the neuroimaging techniques have been widely available, also in 
neurocognitive ones (see e.g., Cohen-Kadosh, Lammertyn, & Izard, 2008; 
G. Wood, Nuerk, & Willmes, 2006).

Although I have no intention to present the history of studies on numerical 
cognition, I have introduced the example of Moyer and Landauer’s study since 
it illustrates the quite different beginnings of the investigation of two domains 
of mathematical thinking. In the case of numerical cognition, early efforts—
driven primarily by psychological methods—were “tuned” to discovering the 
elementary numerical processing by each person familiar with numbers 
(deciding which number is greater does not require specialist knowledge). On 
the other hand, the earliest computational studies on geometric cognition 
instantly aimed to understand the manifestations of higher geometric thinking, 
such as proving theorems, that require extensive training, but “ jumped over” 
elementary geometric cognition. Research on the latter, as we will see in 
Chapter 2, began only in the mid-1980s. Admittedly, numerous behavioral 
studies using geometric stimuli had already been conducted in the 1970s. For 
instance, Shepard and colleagues conducted a well-known study on mental 
imagery and found that in a matching task requiring one to decide whether a 
geometric object is the same but rotated or a mirror of a target, participants’ 
RTs increase with the angle of rotation (L. A. Cooper & Shepard, 1973; 
Shepard & Metzler, 1971). Considering the contribution of the result for 
understanding geometric cognition, we should, however, bear in mind that the 
researchers were interested prima facie in the format of mental representations, 
but not in angle processing in general. Let me put these issues temporarily aside 
and consider how the development of cognitive science affected the studies on 
mathematical thinking.

As we remember, cognitive science was dominated from the outset by the 
triumvirate of computer science, psychology, and theoretical linguistics (in 
practice, Chomsky’s generative theory did not influence early studies on 
mathematical thinking), while neuroscience, anthropology, and philosophy 
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played a peripheral role. During the 1980s, the situation began to change. As 
Bechtel and colleagues (1998) nicely summarized the situation, cognitive science 
“regained that breadth and more by expanding in two directions: vertically into 
the brain and horizontally into the environment” (p. 81). At that time, extensive 
research in all cognitive science branches was carried out, but embodied 
cognition—a new grand perspective on the nature of cognitive processes—also 
came to the fore.17 Although there are numerous ways of understanding what 
“embodiment of the mind” really is, most researchers agree that it refers to claims 
that cognitive processes are causally grounded in sensorimotor activity and that 
the body shapes (constrains, enables, or even constitutes) the mental activity (see 
e.g., Barsalou, 1999; Chemero, 2011; Clark, 1998; Davis & Markman, 2012; 
Lakoff & Johnson, 1980; M. Wilson, 2002).

Besides the fact that embodied cognition has been widely applied in all branches 
of cognitive science—starting from experimental psychology (Glenberg, 2010), 
through linguistics (Lakoff, 1987), philosophy (Varela, Thompson, & Rosch, 
1991), and anthropology (Csordas, 1990), and ending at computer science with its 
new faces, such as behavioral robotics (M. L. Anderson, 2003)—this perspective 
has strongly influenced studies in interdisciplinary research fields, such as social 
mind (Broż ek, 2013; Niedenthal, Winkielman, Mondillon, & Vermeulen, 2009), 
aesthetics (Fingerhut & Prinz, 2018; Matyja, 2016), or psychopathology (Fuchs & 
Schlimme, 2009). Mathematical thinking was not an exception there. Let us start 
introducing the embodied mathematics by recalling that Lakoff and Johnson 
(1980) proposed that the entire conceptual system emerges from sensorimotor 
activity. Concrete concepts grow directly from perceptual and motor experiences, 
accumulated as so-called image-schemas (see Johnson, 2012), while abstract ones 
are produced by metaphorical mappings. According to these authors, a metaphor 
is not just a linguistic expression, but rather “a cognitive tool,” reflected in 
language use and built by two conceptual domains, namely “the target domain, 
which is constituted by the immediate subject matter, and the source domain, in 
which important metaphorical reasoning takes place and that provides the source 
concepts used in that reasoning” (Lakoff & Johnson, 1980, p. 185). Furthermore, 
metaphorical expressions such as “I demolished his argument,” “you’re wasting 
my time,” or “our love relationship is at a crossroads,” are meaningful for us since 
the abstract concepts “argument,” “time,” or “love” preserve the inference 
structure of concrete concepts, respectively, “war,” “money,” and “journey,” 
which directly arise from bodily experience.

A few years later, George Lakoff (1987, pp. 353–369), inspired by the 
speculative ideas of the cofounder of mathematical category theory, Saunders 
Mac Lane (1986), proposed that logical and mathematical concepts are also 
deeply rooted in sensorimotor activity via metaphorical mappings. For instance, 
Lakoff has noted that an idea of “class” (or “set”) arises from an ordinary concept 
of “container,” and a “subclass” originates in bodily experience with part-whole. 
A decade later, Lakoff approached mathematical cognition again in cooperation 
with Rafael Núñez, proposing the metaphorical grounding of various concepts, 
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from fields as numbers (e.g., Numbers Are Points on the Line), arithmetic 
(e.g., Arithmetic Is Motion Along the Path), set theory (e.g., Sets Are Objects), 
or functions (e.g., The Domain of the Function Is a Collection of Acceptable 
Input Objects) (Lakoff & Núñez, 1997; Núñez & Lakoff, 1998). These works 
were only a prelude for Lakoff and Núñez’s (2000) book entitled Where Mathematics 
Comes from: How the Embodied Mind Brings Mathematics into Being, which unified 
the perspectives of cognitive psychology, linguistics, and philosophy of 
mathematics to substantiate the claim that “the detailed nature of our bodies, our 
brains, and our everyday functioning in the world structures human concepts 
and human reason. This includes mathematical concepts and mathematical 
reason” (p. 5). On the pages of this book, the authors developed and presented 
their previous studies in more detail, but also enriched embodied mathematics 
with new far-reaching hypotheses (e.g., regarding the bodily roots of both 
potential and actual infinity) and case studies, e.g., the cognitive structure of 
Euler’s famous identity:

e iπ + =1 0.

In the meantime, somewhere between Lakoff’s initial idea about the possibility 
of applying the category of embodiment to studying mathematical cognition and 
the publication of Where Mathematics Comes From, numerous experimental studies 
on the cognitive processing of numbers by human (both adults and infants) and 
nonhuman animals were conducted. Furthermore, the classic paradigms of 
measuring various aspects of this processing, both in a purely behavioral and a 
neuroscientific manner, were established (Berch, Geary, & Koepke, 2016; 
Campbell, 2005; Cohen Kadosh & Dowker, 2015; Dehaene, 2011; Dehaene & 
Brannon, 2011; Geary, Berch, & Koepke, 2015; given the sizeable nature of the 
literature, I list only some of the “classic” handbooks and review collections 
here). Some of them were used to test the assumptions of the embodiment of 
mathematical cognition.

As we may recall, Lakoff and Núñez proposed that one of the possible 
conceptualizations of numbers refers to the idea of points arranged on a line 
being grounded in bodily experience (Numbers Are Points on the Line). The 
results of multiple studies pioneered by Dehaene, Bossini, and Giraux (1993) 
supported this claim by revealing the behavioral tendency of the majority of 
participants to organize numerical magnitudes spatially. By using the parity 
judgment paradigm, where the participant is asked to decide whether the 
presented digit is even or odd, Dehaene and colleagues found that responses of 
left-to-right readers for small numbers are faster with their left hand, while 
their RTs in relatively large number trials are shorter with the right hand. 
This phenomenon is called “Spatial Numerical Association of Response 
Codes” (SNARC) and has been illustrated on numerous occasions in various 
study designs and groups of participants (see Cipora, Hohol, Nuerk, Willmes, 
Brożek, Kucharzyk, & Nęcka, 2016; Cipora, Soltanlou, Reips, & Nuerk, 



38  Geometric thinking, the paradise of abstraction

2019; G. Wood, Willmes, & Nuerk, 2008). As Deahene (2011) summarized 
this phenomenon in his widely read book entitled The Number Sense:

The finding of an automatic association between numbers and space leads 
to a simple yet remarkably powerful metaphor for the mental representation 
of numerical quantities: that of a number line. It is as if numbers were 
mentally aligned on a segment, with each location corresponding to a 
certain quantity. Close numbers are represented at adjoining locations. No 
wonder, then, that we tend to confound them, as reflected by the numerical 
distance effect. Furthermore, the line can be metaphorically thought of as 
being oriented in space: Zero is at the extreme left, with larger numbers 
extending toward the right. This is why the reflex encoding of Arabic 
numerals as quantities is also accompanied by an automatic orientation of 
numbers in space, small ones to the left and large ones to the right. (p. 70)

At this point it is worth saying that the title of the above-quoted work is far from 
accidental. Although the term number sense was coined much earlier by Tobias 
Dantzig (1954), the title of Dehaene’s book reflects the contemporary emphasis 
on studying the hardwired cognitive capacities of elementary number processing, 
both ontogenetically early and evolutionary ancient, that precede the learning 
of school mathematics and which are shared by all people around the world 
(Pica, Lemer, Izard, & Dehaene, 2004) and some nonhuman animals (Biro & 
Matzusawa, 2001). These capacities are considered domain-specific, since they 
are independent of general cognitive factors such as fluid intelligence, executive 
functions, or linguistic skills, and involve subtilizing (i.e., ability to immediately 
and effortlessly assess the number of small collections with a high degree of 
precision) and the estimation and comparison of larger-magnitude sets of 
elements (see Berch, 2005; Hohol, Cipora, Willmes, & Nuerk, 2017). Although 
there is still some debate regarding this matter, Dehaene and many other 
researchers believe that arithmetic and symbolic numerical systems, which are 
unquestionably cultural inventions, are built up or scaffold themselves on the 
number sense (Butterworth, 2005; Dehaene, 2001; Feigenson, Dehaene, & 
Spelke, 2004; Piazza, Izard, Pinel, Le Bihan, & Dehaene, 2004). There is also a 
suggestion that the number sense, or the hardwired foundations of mathematics 
in general, may be interpreted as a renewed version of Kant’s views (Dehaene & 
Brannon, 2010).

Let us return to the SNARC effect. Although Dehaene originally explained the 
direction of the mental number line by the direction of reading,18 Fischer (2008) 
has proposed that spatial-numerical associations are shaped during individual 
development prior to the acquisition of reading and that the direction of finger 
counting affects these associations (see also Patro & Haman, 2012). The crucial 
observation supporting this hypothesis is that participants who start counting with 
their left hand manifest more robust and consistent spatial-numerical associations 
than right-starters (see Cipora, Patro, & Nuerk, 2015; Fischer & Brugger, 2011; 
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Hohol, Wołoszyn, Nuerk, & Cipora, 2018 for the discussion of this claim). Since 
the beginning of the twenty-first century, finger counting ceased to be perceived 
merely as a transitory step, or immature computational strategy appearing in the 
ontogeny of mathematical skills, and instead became the most extensively studied 
manifestation of the embodiment of numerical cognition (see e.g., Fischer, 2012; 
Jordan, Kaplan, Ramineni, & Locuniak, 2008; Noël, 2005; Penner-Wilger & 
M.  L. Anderson, 2013; Soylu, Lester, & Newman, 2018; Wołoszyn & Hohol, 
2017). Furthermore, the embodied perspective of numerical cognition, with finger 
counting to the fore, has been considered with reference to anthropological data 
(Overmann, 2014) and cultural differences (Lindemann, Alipour, & Fischer, 2011), 
as well as situational influences and cognitive flexibility (Hohol et al., 2018; Wasner, 
Moeller, Fischer, & Nuerk, 2014).

The set of evidence supporting the view that finger counting and number 
processing are deeply connected includes not only the results of behavioral 
experiments but also neuroimaging data. For instance, in a study with positron 
emission tomography (PET), Zago and colleagues (2001) found that both 
performing simple mental calculations and ordinary finger-related actions, such 
as learning of movement patterns and manipulating objects, involve the 
activations of the same brain structures, including the parieto-premotor circuit. 
A subsequent functional magnetic resonance imaging (fMRI) study by 
Tschentscher, Hauk, Fischer, and Pulvermüller (2012) revealed that finger-
counting routines regarding the starting hand affect the pattern of motor cortex 
activation. Finally, Andres, Seron, and Olivier (2007) proposed that the 
relationship between finger counting and elementary numerical cognition has a 
causal character since the numbers are cortically processed through the embodied 
simulation of finger movements (we will discuss the notion of “simulation” and 
other critical issues of embodied cognition in Chapter 3).

The purpose of the above elaboration was not to provide a sketch of the 
landscape or to review the theoretical stances of the cognitive science of 
mathematics (this term was popularized by Lakoff and Núñez). This task would 
be impossible here for practical reasons. My intention was rather to illustrate that 
during the development of cognitive studies on mathematics, accompanied by 
theoretical progress regarding the role of the body in the shaping of thinking, 
“the center of mass” of research shifted toward the processing of numbers and 
calculations. This observation can be further substantiated with the following 
bibliographical and institutional facts.

If one picks up any mathematics-related cognitive science book monographs, 
handbooks, or collection of articles, it is clear that they focus solely, or in the vast 
majority, on number processing. In some cases, the content is fairly reflected by 
the title, as in the above-cited work of Dehaene (2011), The Number Sense, and in 
other literature positions (Butterworth, 1999; Cohen Kadosh & Dowker, 2015; 
C. Everett, 2017; Geary et al., 2015; Henik, 2016). In other instances, the titles 
suggest a broader range of topics because of the use of terms “mathematics” or 
“mathematical cognition” (e.g., Adams, Barmby, & Mesoudi, 2017; Berch et al., 
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2016; Brożek & Hohol, 2017; Campbell, 2005; Gilmore, Göbel, & Inglis, 2018; 
Lakoff & Núñez, 2000; Saxe, 2014). In practice, these volumes are primarily 
focused on numbers, and geometry is a marginal topic.19 For instance, in Lakoff’s 
and Núñez’s Where Mathematics Comes From, which aspires to be the most 
comprehensive account, the discussion of geometry is restricted only to the 
Cartesian plane and analytic geometry, and the cognitive foundations of 
Euclidean approach are absent. Admittedly, there are few books where both 
classic studies and theories of Euclidean thinking—with which we are already 
familiar—and more recent ones—which we will discuss in the following 
chapters—are reviewed (Dehaene & Brannon, 2011; Geary, Berch, Ochsendorf, 
& Koepke, 2017; Giaquinto, 2007; Roth, 2011). This does not, however, change 
the general observation that geometric cognition is in the minority.

An analysis of the institutional basis of the cognitive science of mathematics 
also shows that numbers and calculations constitute a research topic that 
overshadows geometry. On the one hand, studies on both numerical and 
geometric cognition are welcome in almost all cognitive science (or their 
constituent branches) journals and conference meetings. On the other hand, one 
of the signs of research specialization is the creation of journals focused on 
publishing original research, reviews, or theoretical contributions, on specific 
topics. Indeed, in 1995, the specialist journal entitled Mathematical Cognition was 
established, but only four years later it closed because of the insufficient number 
of submissions. Perhaps symptomatic of this, none of the articles published in the 
journal during its short existence concerned geometric cognition. The same is 
true regarding the Journal of Numerical Cognition, because of its clearly defined 
specialization, and which has been publishing since 2015. A similar sentiment 
can be expressed about symposia and conferences: in contrast to the processing 
of numbers, there is no cyclical conference regarding geometric cognition.

Fortunately, geometry-related cognitive studies, as we will see in subsequent 
chapters, reach beyond those discussed so far. It is hard to deny, however, that 
although cognitive science has been interested in how geometric thinking works 
almost from the outset, over time the mainstream of cognitive studies began to 
focus increasingly on number processing. When the term cognitive science of 
mathematics became popular, most of the academic milieu identified it with 
studying how the mind deals with numbers. Traversing Freudenthal’s (1971) 
summary of the long-term relationship between geometry and mathematics 
quoted at the end of Section 1.2, we can say that for the majority of cognitive 
scientists today, mathematical cognition is synonymous with number processing.

1.7  Summary

I have described different perspectives on studying geometric thinking in the 
sections above. I began from the perspective of the history of mathematics, trying 
to show the evolution of geometry from the art of measuring and practical 
knowledge about figures or polyhedrons to the paradise of abstraction, where 
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geometric reasonings are necessarily true and lead to general conclusions. I then 
adopted a philosophical perspective and presented a timeless discussion running 
from Plato to Helmholtz on the sources of geometric knowledge. Afterward, I 
discussed the first psychological and experimentally grounded account of 
geometry by Piaget and Inhelder, which considered its subject matter from the 
perspective of cognitive development. Subsequently, we moved on to an 
educational perspective on the development of geometric skills, and the classic 
model by van Hieles in particular, which inspired numerous curricula and 
continues to do so today. Finally, in the last section, I covered the cognitive 
revolution of the 1950s and investigated how studies on mathematical cognition 
have changed over time. The last piece familiarized us with a research perspective 
that we will explore—however with some recursions to those presented in the 
previous sections—until the end of the book. In the following chapter, we will 
look at the hardwired foundations of geometric cognition.
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Brożek, B., & Hohol, M. 2017. Umysł matematyczny (The mathematical mind) (3rd ed.). 
Kraków, Poland: Copernicus Center Press.
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Notes

	 1.	 This section does not aspire to be a complete historical reconstruction of the origins 
of geometry. What is more, I am aware that its content is simplified and the 
achievements of several Ancient mathematicians, such as Eudoxus of Cnidus, are 
omitted here. Readers interested in the beginnings and further development of 
geometry should refer to professional textbooks, historical monographs and collections 
of essays (see, e.g., De Risi, 2015; Goodman, 2016; Heller, 2019; Merzbach & Boyer, 
2011; O’Leary, 2010; Scriba & Schreiber, 2015).

	 2.	 Some traditional editions of Elements were enriched by two additional “apocryphal” 
books on regular solids. Today, we know that Euclid was not their author. The 
authorship of the XIV book is attributed to Hypiscles of Alexandria, and the XV 
book is, at least partly, a work by Isidore of Miletus.

	 3.	 Noteworthy, the purpose of so-called definitions introduced by Euclid is to facilitate 
the grasp of the meaning of geometric concepts, but they are not definitions in the 
strict logical sense. Some of them are circular—they do not satisfy the requirement 
that a definiens should be better known than definiendum (Merzbach & Boyer, 2011, 
p. 95; Russo, 2004, pp. 320–237). For this and other reasons (see the note 4), I said 
earlier that Euclid’s method is modeled on the Aristotelian idea.

	 4.	 It should be noted that Euclid’s distinction between postulates and common notions 
cannot be directly identified with an Aristotelian division of principles into axioms 
and postulates. According to Merzbach and Boyer (2011), “we do not know whether 
Euclid distinguished between two types of assumptions. Surviving manuscripts are 
not in agreement here, and in some cases, the ten assumptions appear together in a 
single category. Modern mathematicians see no essential difference between an 
axiom and a postulate” (p. 95). But how do Euclidean postulates and common 
notions concepts differ? In A Commentary on the First Book of Euclid’s Elements, Proclus 
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(1970) said that although both kinds of initial statements are self evident and easy to 
grasp, the former take the form of effortless construction problems or tasks (i.e., “to 
draw a straight-line from any point to any point”), whereas the later are obvious 
assertions (i.e., “Things equal to the same thing are also equal to one another”). As 
Proclus says, “a postulate prescribes that we construct or provide some simple or 
easily grasped object for the exhibition of a character, while an axiom (common 
notion—M.H.) asserts some inherent attribute that is known at once to one’s auditors 
(…). So a postulate has the same general character as an axiom but differs from it in 
the manner described” (Proclus, 1970, p. 181).

	 5.	 As the scope of the book is limited solely to Euclidean geometry, every reader 
interested in the non-Euclidean geometries should reach for other elaborations. 
The books by Greenberg (1993) and Trudeau (2009) are useful introductions.

	 6.	 In opposition, analytic means that a predicate concept of a proposition is contained in 
its subject concept (e.g. “all bachelors are unmarried”); a posteriori means, in turn, 
that the justification of proposition depends upon empirical experience (“all 
bachelors are sad”).

	 7.	 Note, however, that Helmholtz—as Biagioli (2016) pointed out—“made it clear 
that geometrical assumptions cannot be tested directly. Such a test must be indirect 
because of the origin of geometrical axioms. Though Helmholtz maintained that 
geometrical axioms have empirical origins, he emphasized the role of cognitive 
functions and inferences in the formation of geometrical notions. Geometrical 
structures, as idealized constructions, can correspond only approximately to 
empirical contents presently under consideration. Possibly different (e.g., non-
Euclidean) interpretations of the same phenomena cannot be excluded” (p. 52).

	 8.	 Note, however, that in 1878 during discussion with Albrecht Krause, Helmholtz 
uttered the famous phrase that “space can be transcendental without the axioms 
being so.” See the paper by Biagioli (2013) for further analysis.

	 9.	 Helmholtz was not alone in the claim that there is nothing special in Euclidean 
geometry. Hans Hahn (1980), the Austrian mathematician and member of famous 
Vienna Circle, stated that:

If the use of multi-dimensional and non-Euclidean geometries for the ordering 
of our experience continues to prove itself so that we become more and more 
accustomed to dealing with these logical constructs; if they penetrate into the 
curriculum of the schools; if we, so to speak, learn them at our mother’s knee, 
as we now learn three-dimensional Euclidean geometry, then nobody will 
think of saying that these geometries are contrary to intuition. They will be 
considered as deserving of intuitive status as three-dimensional Euclidean 
geometry is today. For it is not true, as Kant urged, that intuition is a pure a 
priori means of knowledge, but rather that it is force of habit rooted in 
psychological inertia. (p. 101)

	10.	 To make the following reconstruction of the Piaget’s and collaborators views on 
mental construction of Euclidean space accessible, I intentionally skip the Piagetian 
nomenclature of developmental stages and substages. Instead, I list the approximate 
age at which, according to these researchers, children reach particular spatial 
capacities. All the skipped details can be found in the cited original works as well as 
in literature reviews. Note also that in the introduction to Piaget’s theory of spatial 
development and its critique I frequently refer to the review by Clements and Battista 
(1992). A book by Roth (2011) is also a very useful position.
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	11.	 Note that the listed properties called by Piaget and Inhelder (1967) “topological” 
were investigated earlier by Gestalt psychologists. The child at the earliest 
developmental stage does not show, however, all the perceptual capacities known 
from Gestalt theory. Furthermore, not all of them can be understood, in Piagetian 
terms, as topological. As Piaget and Inhelder note “in opposition to the main 
hypothesis of the Gestalt theory, we believe (…) that perception of ‘good 
configurations’ (or simple Euclidean forms) itself evolves with age as a result of 
sensori-motor activity. Eye movements, tactile exploration, imitative analysis, active 
transpositions, etc., all play a fundamental part in this development” (p. 10).

	12.	 Noteworthy, we will not find “connectedness” on Piaget and Inhelder’s (1967) list 
of topological properties. Martin (1976a) declares, however, that “connectedness was 
selected for study because of its relative importance in topology and because, as a 
concept, it bears similarities to what appears to be Piaget’s notion of continuity” 
(p. 29).

	13.	 One should bear in mind that details of the van Hieles’ model, especially the number 
of levels and their naming and numbering, have changed over time. Note that 
originally the levels were not numbered from 1 but started from 0. In the following 
reconstruction, I refer to the works by Clements and Battista (1992) and Battista 
(2007).

	14.	 The same is true about the perspective on cognitive development by Vygotsky 
(1934/1986), which will be introduced in the next chapters.

	15.	 Note that 1956 was not only the time of the aforementioned symposium, but also the 
publication of several works, for example, by Bruner, Goodnow, and Austin (1956); 
G. A. Miller (1956); Newell and Simon (1956); or Shannon and McCarthy (1956), 
which rapidly became classics for the cognitive science.

	16.	 Studies on geometric theorem-proving programs were “in touch” not only with 
psychological analysis of verbal protocols, but also had educational recourses. For 
instance, when discussing the DC model, Koedinger and J. R. Anderson (1990) 
claimed that “the organization of knowledge in DC suggests an alternative task-
adapted organization of the geometry curriculum. Typical geometry curricula are 
organized around topics, and focus on teaching the formal rules of geometry. 
Alternatively, a curriculum could be organized around diagram configuration 
schemas (…). The formal rules, then, could be taught in the context of how they are 
used to prove schemas. Such a task-adapted curriculum organization can help 
students remember rules and access them in the appropriate situations” (pp. 
547–548).

	17.	 It is noteworthy that philosophical sources of embodiment, as well as the birth of the 
term itself, go back to phenomenological tradition, for instance, Merleau-Ponty’s 
works (e.g., 1945/2002). Psychological sources are also much older than the 1980s. 
Arguably, since Piaget (1926) emphasized the pivotal role of bodily activity, that is, 
exploration of the surroundings, manipulation of objects, and internalization of 
these actions, in constructing cognitive structures, he may also be considered one of 
the predecessors of the embodiment (see Marshall, 2016). On the other hand, 
according to Piaget’s approach, the role of the bodily activity decreases with age, and 
when the child reaches so-called formal operation stage, her thinking becomes 
abstract and initial embodied grounding of cognition fades. This idea contrasts with 
embodied cognitive science: its theorists claim that perceptual and motor activity 
constitute cognition across one’s lifespan.
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	18.	 Note that among the users of right-to-left reading systems, for example, Palestinians, 
the reverse SNARC effect has been revealed. Namely, they respond faster for small 
numbers with their right hand and for large numbers with their left. In the case of 
Israelis—who read the Hebrew language from right to left, but Arabic numbers in 
the reverse order—no spatial-numerical associations reflected in RTs were initially 
found (Shaki, Fischer, & Petrusic, 2009). More recently, however, Zohar-Shai, 
Tzelgov, Karni and Rubinsten (2017) revealed the SNARC effect in native Hebrew 
speakers.

	19.	 The observant reader will have noticed that my previous book, written together with 
my colleague Bartosz Brożek in Polish, is present in the set of literature references. I 
should confess that its title (in English, The Mathematical Mind) is misleading, since it 
promises more than we could actually give. Besides a few references to geometry, the 
book is dedicated entirely to the cognitive processing of numbers and some broader 
theoretical issues, however, associated mainly with numerical processing.

	 1.	 I could call these “hardwired” capacities “the geometric sense” in reference to “the 
number sense,” a term introduced by Dantzig (1954; see Berch, 2005 for discussion) and 
popularized in contemporary studies on number processing by Dehaene (2011; see 
Section 1.6 of Chapter 1). Instead, although it is perhaps just a matter of semantics, I 
prefer to talk about “hardwired geometric skills” (or capacities) enabling “hardwired 
geometric cognition.” I have also adopted such a convention in an earlier article (Hohol 
& Miłkowski, 2019). The main reason is that the current state of research indicates that 
there is no single mental system that makes knowledge about geometry possible.

	 2.	 It should be noted that younger children cannot be tested in this reorientation task 
since it requires independent locomotion.

	 3.	 Note that Mayr (1961) proposed a distinction between proximate and ultimate 
factors that correspond to different aspects of scientific explanation. While the 
former refers directly to the factors underlying explaining phenomenon, the latter 
concerns the evolutionary origin of the phenomenon. While Tinbergen’s (1963) 
questions (1) and (2) correspond to Mayr’s proximate factors, items (3) and (4) are 
close to ultimate ones (see also Table 2.1).

	 4.	 Prinz (2006), for instance, noted that “systems that have been alleged to be modular 
cannot be characterized by the properties on Fodor’s list. At best, these systems have 
components that satisfy some of Fodor’s criteria. There is little reason to think that 
these criteria hang together, and, when considered individually, they apply to a 
scattered and sundry assortment of subsystems. It is grossly misleading to say that the 
mind is modular. At best, the mind has a smattering of modular parts” (p. 32).

	 5.	 Note that the parahippocampal place area, a structure that has been perceived as 
directly involved in spatial navigation, recently turned out to be insensitive to sense 
(left-right) information (Persichetti & Dilks, 2016). The results of a recent 
neuroimaging study by Dillon and colleagues (2017) show that this structure is 
sensitive to relative length and angle but only in the case of pictures depicting scenes 
(not objects). This finding demonstrated that the main role of this structure, as the 
authors note, “may not be for navigation through a scene, but rather for scene 
categorization (e.g., recognizing a place as a kitchen or beach), consistent with the 
classic evidence that shape analysis is central to object recognition and categorization” 
(p. 8).

	 6.	 Many advocates of evolutionary psychology, such as Pinker (2009) and Buss (2009), seem 
to reject this claim. Instead, they accept the adaptive lag hypothesis, which states that 
the shape of contemporary cognitive systems is the result of adaptation to 
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Pleistocene—not contemporary—environmental conditions and challenges. As 
Cosmides and Tooby (1997) explicitly say, “our modern skulls house a stone age mind” 
(p. 10). This hypothesis, however, has been criticized by many authors (see Buller, 
2006; E. A. Smith et al., 2001). The necessity of studying “current utility” is in line 
with a crucial assumption of human behavioral ecology that “human beings are able to 
alter their behavior flexibly in response to environmental conditions in a manner that 
optimizes their lifetime reproductive success” (Laland & G. R. Brown, 2006, p. 93).

	 7.	 In this context it is worth mentioning the Artificial Life simulations by Ponticorvo 
and Miglino (2009). They find that “different orientation abilities can emerge, 
varying systematically the exposure to different environmental cues. It is possible to 
evolve agents with different spatial skills by varying the frequency with which they 
are exposed to different classes of stimuli during their evolution. Agents that evolve 
in environments providing balanced exposure to geometric and non-geometric cues 
acquire the ability to use both kinds of clue. Agents that are exposed primarily to a 
single class of cue show primacy. This supports our hypothesis, according to which 
geometric primacy, non-geometric primacy or successful integration between the 
two classes of information depend on the relative frequencies at which organisms are 
exposed to these information during their evolution and development” (p. 170).

	 8.	 Note that current knowledge about the core geometric cognition of nonhuman 
primates is very limited. For example, the geometry-based navigation abilities of our 
closest relatives, that is, bonobos and chimpanzees, are—to the best of my 
knowledge—so far completely unexplored.

	 9.	 Hermer-Vazquez and colleagues (2001) treated children’s performance in a 
reorientation task with a landmark as a dependent variable, while the tested independent 
variables involved, among other things, age, fluid intelligence, digit span, spatial 
memory span, and the comprehension and production of various spatial phrases.

	 1.	 It is noteworthy that while a “mental representation” is a basic notion in both classic 
cognitive science and most of its contemporary variations (see, however, note 8 in 
this chapter), there is still debate as to what really deserves to be called full-blooded 
representation. This question goes hand in hand with the charge that the notion is 
used in interdisciplinary studies on cognition—that is, in the case of simple detectors 
of features—in a too liberal manner. The reader interested in this topic should reach 
for Ramsey’s (2007) book and more recent articles by Gładziejewski (2015) and 
Thomson and Piccinini (2018).

	 2.	 Note, however, that this is an interpretation of the initial version of Kosslyn’s 
approach. The theory of mental imagery has changed over time, among others under 
the pressure of neuroscientific data, but I do not have the opportunity to trace its 
development here (see Ganis, Thompson, & Kosslyn, 2004; Kosslyn, 1996; Kosslyn, 
Ganis, & Thompson, 2003; Pearson & Kosslyn, 2015).

	 3.	 Clever Hans was an Orlov Trotter horse owned and trained by a Berlin-based 
mathematics schoolteacher, Wilhelm von Osten (1838–1909). The latter was firmly 
convinced that Hans manifested mathematical capacities and other humanlike 
highly intellectual skills. At the beginning of the twentieth century, the alleged 
talents of Clever Hans were investigated by Carl Stumpf, who was one of the 
founding fathers of German experimental psychology, and his assistant Oskar 
Pfungst. It turned out that the intriguing behavior of the horse was a response to 
bodily cues delivered, in an unconscious and involuntary way, by the owner 
(see  Dehaene, 2011, pp. 4–7, and Samhita & Gross, 2013 for more details and further 
discussion).
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	 4.	 On the other hand, although earlier philosophical empiricists definitely rejected 
nativism, the theory of perceptual symbols does not seem to exclude the innateness 
(or hardwiredness, in the terms adopted in the book) of some components of mental 
equipment (Markman & Dietrich, 1999).

	 5.	 This does not mean, however, that we cannot point the defenders of the amodal 
approach to cognition. Pylyshyn (1973; 1981), for instance, argued fervently against 
the cognitive function of mental images.

	 6.	 Note, however, that in contrary to J. J. Gibson (1979/2015), who claimed that 
affordances are perceived directly by the observer (“directly,” means without the 
need for forming mental representations), Glenberg and Robertson (1999) explicitly 
“allow for the mental representation of affordances” (p. 4). It should be mentioned 
here that Gibson’s ecological psychology inspired antirepresentationalist cognitive 
science (see also note 8 in this chapter).

	 7.	 So far in the domain of experimental psychology of mathematics, only a few studies 
with the participation of professional mathematicians have been carried out. In 
addition to those of Amalric and Dehaene quoted in this paragraph, here are a number 
of others: Cipora, Hohol, Nuerk, Willmes, Brożek, Kucharzyk, & Nȩcka, 2015; Sella, 
Sader, Lolliot, & Cohen Kadosh, 2016; Zeki, Romaya, Benincasa, & Atiyah, 2014.

	 8.	 Note that the existing terminology is fuzzy and there are also various ways of 
characterizing variants of embodiment. For instance, wide-scope as well as narrow-
scope embodied cognition in Machery’s (2007) sense, introduced in Section 3.3, 
could be considered moderate embodiment since both perspectives preserve a 
standard view of cognitive psychology (resp. cognitive science) that cognitive 
activity consists of processing the mental representations. The controversy concerns 
the format of representations (modal-amodal) but not their existence (see, e.g., van 
Elk, Slors, & Bekkering, 2010). In contrast, the radical theories of embodiment, such 
as those proposed by Chemero (2011) and Gallagher (2017), reject a notion of mental 
representation entirely. To the best of my knowledge, there are no empirically 
fruitful accounts of geometric cognition within the radical embodiment (in the 
above meaning), and thus I will not discuss this perspective (but see Hutto, 2019; 
Roth, 2011 for the attempt to adopt an antirepresentational attitude to mathematical 
thinking in general).

	 9.	 Note that the term “scaffolding” was introduced by Jerome Bruner in the middle 
1970s (see D. Wood, Bruner, & Ross, 1976); however, it was strongly influenced by 
Vygotsky’s work (see also Lajoie, 2005; Sterelny, 2010).

	10.	 Linguistic arbitrariness can be defined as “the unpredictable mapping of form and 
meaning such that, apart from a social convention to use word A for meaning B, 
there is no connection between the sound of a word and aspects of its meaning” 
(Dingemanse, Blasi, Lupyan, Christiansen, & Monaghan, 2015, p. 604).

	11.	 Dove (2011) called his approach dis-embodiment, wherein the dash is crucial, due to 
the distinction from amodal theories. According to him, “A mental symbol is dis-
embodied if (1) it is embodied but (2) this embodiment is arbitrarily related to its 
semantic content. In other words, a mental symbol is dis-embodied if it involves 
sensorimotor simulations of experiences that are not associated with its semantic 
content” (p. 6).

	 1.	 Of course, mathematicians and philosophers also attribute other features to 
mathematical proof. They frequently say, for instance, that a good proof should be 
economical (Hardy, 1940/2005, p. 29), explanatory (Mancosu, Jørgensen, & 
Pedersen, 2006), and even beautiful (Heller, 2012; Rota, 1997).
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	 2.	 Note that Netz explicitly identifies “universalist” cognitive science with Fodor’s 
(1983) modular theory of mind. Although the characteristics of core systems of 
geometry (Spelke, S. A. Lee, & Izard, 2010) cannot be directly translated into a 
Fodorian account, as we have seen in Chapter 2, these systems, similarly to modules, 
are initially (namely in early childhood) universal to all human individuals and 
shared with nonhuman animal species. Hence, Netz would probably agree that 
cognitive science focused on core systems can also be called “universal.”

	 3.	 A distinction between the vertical and horizontal cultural transmission of knowledge 
has been introduced by Cavalli-Sforza and Feldman (1981).

	 4.	 In Sections 4.2–4.4, I refer to our investigation presented in the article entitled 
Cognitive Artifacts for Geometric Reasoning (Hohol & Miłkowski, 2019).

	 5.	 Hilbert’s axioms refer to the properties involving incidence (8 axioms), order (4 
axioms; the Pasch axiom is one of them), congruence (6 axioms), parallels (1 axiom) 
as well as continuity (2 axioms).

	 6.	 This is illustrated by Hilbert’s famous dictum: “One must be able to say at all times–
instead of points, straight lines, and planes—tables, chairs, and beer mugs” (Corry, 
2004, p. 124).

	 7.	 Note that our knowledge about the functions of Greek diagrams was, until recently, 
incomplete. As Netz noted, “the scholars who edited mathematical texts in the 
nineteenth century were so interested in the words that they ignored the images. If 
you open an edition from that era, the diagrams you find are not based upon what is 
actually drawn in the original manuscripts. The diagrams represent, instead, the 
editor’s own drawing” (Netz & Noel, 2009, p. 31). Detailed information on this 
matter can be found in work by Saito and Sidoli (2012).

	 8.	 Historians of mathematics, or historians of science, in general, frequently highlighted 
the existence of “the genetic link between rhetoric and the hypothetico-deductive 
method,” to refer to Russo’s (2004, p. 196) words. Furthermore, as the researcher 
suggests, “the scientific method, too, had its roots in oral culture, thus going back to 
long before the Hellenistic period” (ibid.). There is also agreement that orality 
played a very important role in Greek culture (see Thomas, 1992).

	 9.	 We critically discuss Netz’s thesis of the substitution of mathematical ontology by 
diagrams in Hohol and Miłkowski (2019). According to our interpretation, Netz’s 
thesis implies that diagrams, understood as cognitive artifacts, or cognitive tools (in 
his terminology), are sufficient for not only mathematical practice, but also that no 
semantic considerations are needed (see Latour, 2008). We propose that the thesis 
about the neutrality of diagrams should be considered as being divided into two 
components, namely ontological and epistemological ones. We claim that the use of 
diagrams (and linguistic formulae as well) is ontologically neutral, but simultaneously, 
there is no epistemological neutrality connected with using them. While diagrams 
considerably constrain the permitted steps when one conducts the geometric 
reasoning (proof ), the issue of mathematical ontology assumed by her is still open. In 
other words, diagrams do not constrain ontological choices. From the point of view 
of mathematical practice (or in the context of justification), it is not crucial whether 
the geometer accepts the realistic (i.e. Platonic or Aristotelian) interpretation of 
geometric constructions (where a diagram serves as a model of the eternal geometric 
object) or Menaechmus’ constructivist approach (where there is nothing “outside” a 
geometric construction that is made by the human being). The acceptance of a 
particular philosophical option may be important, however, in the context of 
mathematical discoveries (Reichenbach, 1938; see also Giaquinto, 1992). It is 
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noteworthy that the textual evidence does not exclude the fact that the purely 
empirical nature of the earliest measurement of the Earth developed by the Egyptians 
stimulated a realistic rather than a constructivist attitude on the part of Greek 
mathematicians, despite the transformation of geometry into a science of abstract 
concepts. This hypothesis is consistent with the fact that Greek geometry has not only 
a purely mathematical face, but also a practical one (Russo, 2004). The use of 
geometry in Greek architecture is an example that immediately comes to mind 
(Leonardis, 2016). The use of physical tools could also stimulate a realistic attitude. In 
this context, it is worth mentioning A. Seidenberg’s (1959) hypothesis that the idea of 
geometric proof emerged from constructions made by using a peg and cord. To sum 
up this philosophical digression, cognitive artifacts indeed play the constraining role 
in the context of mathematical justification. Thanks to them, epistemological practice 
is completely isolated from questions such as “does the geometric point, namely 
something ‘that of which there is no part’ (Definition 1, Book 1 of Euclid’s Elements) 
exist in reality”? Regardless of how the geometer answers this question, the proof 
remains correct. This is possible because the space of admissible operations when we 
prove the theory is constrained by the properties of publicly shared cognitive artifacts. 
These properties do not determine, however, the ontological status of geometric 
objects. Our thesis implies that the necessity and generality of Euclidean geometry 
are achieved in an ontologically neutral way, because these epistemic virtues emerge 
from the use of cognitive artifacts.

	10.	 Regarding the acquisition of formulae, Lord (1960) stated that, “When we speak a 
language, our native language, we do not repeat words and phrases that we have 
memorized consciously, but the words and sentences emerge from habitual usage. 
This is true of the singer of tales working in his specialized grammar. He does not 
‘memorize’ formulas, any more than we as children ‘memorize’ language. He learns 
them by hearing them in other singers’ songs, and by habitual usage they become 
part of his singing as well. Memorization is a conscious act of making one’s own, and 
repeating, something that one regards as fixed and not one’s own. The learning of an 
oral poetic language follows the same principles as the learning of language itself, not 
by the conscious schematization of elementary grammars but by the natural oral 
method” (p. 36).
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